calc

posted by .

What is the volume of the solid with given base and cross sections?

The base is the region enclosed by y=x^2 and y=3. The cross sections perpendicular to the y-axis are rectangles of height y^3.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus

    The base of a solid is the region enclosed by the graph of x^2 + 4y^2 = 4 and cross-sections perpendicular to the x-axis are squares. Find the volume of this solid. a. 8/3 b. 8 pi/3 c. 16/3 d. 32/3 e. 32 pi/3 Thanks in advance! :)
  2. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  3. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  4. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  5. College Calculus

    Find the volume of the solid with given base and cross sections. The base is the unit circle x^2+y^2=1 and the cross sections perpendicular to the x-axis are triangles whose height and base are equal.
  6. Calculus

    Let R be the region enclosed by the graphs y=e^x, y=x^3, and the y axis. A.) find R B.) find the volume of the solid with base on region R and cross section perpendicular to the x axis. The cross sections are triangles with height …
  7. AP Calc B/C

    The base of a solid is the region enclosed by y=x^3 and the x-axis on the interval [0,4]. Cross sections perpendicular to the x-axis are semicircles with diameter in the plain of the base. Write an integral that represents the volume …
  8. Calculus

    Let f and g be the functions given by f(x)=1+sin(2x) and g(x)=e^(x/2). Let R be the shaded region in the first quadrant enclosed by the graphs of f and g. A. The region R is the base of a solid. For this solid, the cross sections, …
  9. Calculus

    The base of a solid is the region bounded by the lines y = 5x, y = 10, and x = 0. Answer the following. a) Find the volume if the solid has cross sections perpendicular to the y-axis that are semicircles. b) Find the volume if the …
  10. Calc

    The base of a solid is the unit circle x^2 + y^2 = 4, and its cross-sections perpendicular to the x-axis are rectangles of height 10. Find its volume. Here's my work: A for rectangle=lw A=10*sq(4-x) V= the integral from -4 to 4 of …

More Similar Questions