Physics

posted by .

A string has a linear density of 6.7 x 10-3 kg/m and is under a tension of 210 N. The string is 1.6 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, and (c) frequency of the traveling waves that make up the standing wave.

  • Physics -

    We can't see your drawing. The number of half-waves must be known.

  • Physics -

    in the drawing there are three half waves and 2 nodes

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    The transverse standing wave on a string fixed at both ends is vibrating at its fundamental frequency of 250 Hz. What would be the fundamental frequency on a piece of the same string that is twice as long and has four times the tension?
  2. Physics

    A string has a linear density of 6.7 x 10-3 kg/m and is under a tension of 210 N. The string is 1.6 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  3. physics

    A string has a linear density of 8.5*10^-3 kg and is under the tension of 280 N. The string is 1.8 m long, is fixed at both ends, and vibrating in the standing wave pattern. What is the speed, length, and frequency?
  4. physics

    A 2.49-m-long string, fixed at both ends, has a mass of 7.17 g. If you want to set up a standing wave in this string having a frequency of 455 Hz and 5 antinodes, what tension should you put the string under?
  5. physics. HELP PLEASE

    A string has a linear density of 5.3 x 10-3 kg/m and is under a tension of 370 N. The string is 1.8 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  6. physics

    A string has a linear density of 8.1 x 10-3 kg/m and is under a tension of 200 N. The string is 2.9 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  7. Physics

    A string is fixed at both ends and vibrating at 120 Hz, which is its third harmonic frequency. The linear density of the string is 4.9x10-3 kg/m, and it is under a tension of 3.6 N. Determine the length of the string.
  8. Physics

    A string has a linear density of 6.2 x 10-3 kg/m and is under a tension of 250 N. The string is 1.2 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  9. Physics

    A string has a linear density of 6.2 x 10-3 kg/m and is under a tension of 250 N. The string is 1.2 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  10. Physics

    A standing wave is set up in a string of variable length and tension by a vibrator of variable frequency. Both ends of the string are fixed. When the vibrator has a frequency fA, in a string of length LA and under tension TA, nA antinodes …

More Similar Questions