# Statistics

posted by .

If Y1 is a continuous random variable with a uniform distribution of (0,1)

And Y2 is a continuous random variable with a uniform distribution of (0,Y1)

Find the joint distribution density function of the two variables.

Obviously, we know the marginal density functions of each variable. I am used to solving for the marginal density functions from the joint density functions but not the other way around. Since, the variables are not independent, I can't simply multiply the marginal density functions together. Any ideas?

## Similar Questions

1. ### ap stats need help

Continuous Random Variable, I Let X be a random number between 0 and 1 produced by the idealized uniform random number generator described. Find the following probabilities: a.P(0¡ÜX¡Ü0.4) b.P(0.4¡ÜX¡Ü1) c.P(0.3¡ÜX0.5) d.P(0.3(<X<0.5) …
2. ### stats

Continuous Random Variable, I Let X be a random number between 0 and 1 produced by the idealized uniform random number generator described. Find the following probabilities: a.P(0less than or equal to X less than or equal to 0.4) b.P(0.4 …
3. ### ap stats

Continuous Random Variable, I Let X be a random number between 0 and 1 produced by the idealized uniform random number generator described. Find the following probabilities: a.P(0less than or equal to X less than or equal to 0.4) b.P(0.4 …
4. ### Statistics

Find an example of application of Normal Distribution (or approximately Normal Distribution) in your workplace or business (or any other business that you are familiar with). Prove that the variable has the characteristics of a Normal …
5. ### statistics

A random variable may assume any value between 10 and 50 with equal likelihoods. (Uniform distribution) Determine the following values for this probability distribution: a) b) c) f(x) = d) P(x < 25) e) P(x > 15) f) P( 12 < …
6. ### statistics

Let X be a continuous random variable that is normally distributed with mean, µ = 15 and standard deviation, σ = 2.8, find a value xo that represents the 80th percentile of the distribution.
7. ### statistics

two dices are tossed once. let the random variable be t he sum of the up faces on the dice. A). find and graph the probability distribution of the random variable. and b) calculate the mean (or expectation) of this distribution
8. ### statistics

A random variable X is best described by a continuous uniform distribution from 20 to 45 inclusive. The standard deviation of this distribution is approximately
9. ### statistics

Let U, V be random numbers chosen independently from the interval [0; 1] with uniform distribution. Find the cumulative distribution and density of each of the variables (a) Y = U + V. (b) Y = Absolute value of (U - V).
10. ### statistics

2. Using the MM207 Student Data Set: a) Select a continuous variable that you suspect would not follow a normal distribution. b) Create a graph for the variable you have selected to show its distribution. c) Explain why these data …

More Similar Questions