Chemistry

posted by .

I am so stuck on this problem:
λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5.

I know 1/lambda = RH (1/n2 - 1/n2)

1/(.4118e-6 m) = RH (1/4 - 1/25)

RH = 1.156e7 ??

  • Chemistry -

    That looks ok to me. The Rydberg constant is 1.097 x 10^7 m^-1 so your calculated value is close.

  • Chemistry -

    It's actually 1.097*10nm^-2n^-1

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. chem

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5. I am not certain of your difficulty here. Can you amplify?
  2. chem

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5. change the line spectrum to meters you know the equation is Et= Ef-Ei (i think …
  3. chemistry

    Calulate the wavelengths (in nm) of the visible lines in the line spectrum of hydrogen using the Rydberg equation (nf = 2; ni = 3, 4, 5, and 6).
  4. Chem.

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6.
  5. college chemistry

    ë for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5 I have tried to figure this out so many times, found the same answer, and it's always …
  6. chemistry

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6.
  7. Rydberg equation

    λ for one line of the hydrogen spectrum is .4118 x 10-4 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6.
  8. Chemistry

    In the spectrum of a specific element, there is a line with a wavelength of 656 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for …
  9. Chemistry

    In the spectrum of a specific element, there is a line with a wavelength of 656 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for …
  10. Chemistry 1

    In the spectrum of a specific element, there is a line with a wavelength of 486 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for …

More Similar Questions