Repost physics

posted by Han

Suppose the position of an object is given by ->r(vector) = (3.0t^2*ihat - 6.0t^3*jhat)m. Where t in seconds.

Determine its velocity ->v as a function of time t.

Determine its acceleration ->a as a function of time t.

Determine ->r at time t = 2.5 s.

Determine ->v at time t = 2.5s.

I don't really understand the vector units and the answers require the i^ and j^ vector units. Please explain the significance, my prof didn't do justice in class.

1. Damon

R = 3 t^2 i -6 t^3 j

V = dR/dt = 6 t i - 18 t^2 j

A = d^2R/dt^2 = dV/dt = 6 i - 36 t j

use 2.5 for t to get numbers

2. Han

pweasey-weasy?

3. Han

thank you damon

Similar Questions

1. Physics-calc

Suppose the position of an object is given by ->r(vector) = (3.0t^2*ihat - 6.0t^3*jhat)m. Where t in seconds. Determine its velocity ->v as a function of time t. Determine its acceleration ->a as a function of time t. Determine …
2. physics

At t= 0, a particle starts from rest at x= 0, y= 0, and moves in the xy plane with an acceleration ->a (vector) = (4.0ihat+ 3.0jhat)m/s^2. Assume t is in seconds. Determine the x component of velocity as a function of time t. Determine …
3. Physics urgent help needed!

Suppose the position of an object is given by ->r(vector) = (3.0t^2*ihat - 6.0t^3*jhat)m. Where t in seconds. Determine its velocity ->v as a function of time t. Determine its acceleration ->a as a function of time t. Determine …
4. phys

At t= 0, a particle starts from rest at x= 0, y= 0, and moves in the xy plane with an acceleration ->a = (4.0ihat+ 3.0jhat)m/s^2. Assume t is in seconds. Determine the position of the particle as a function of time t. Express your …
5. physics

The acceleration of a particle moving only on a horizontal plane is given by a= 3ti +4tj, where a is in meters per second-squared and t is in seconds. At t = 0s, the position vector r= (20.0 m)i + (40.0 m)j locates the particle, which …
6. physics

The coordinates of an object moving in the xy plane vary with time according to the equations x = −6.85 sin ùt and y = 4.00 − 6.85 cos ùt, where ù is a constant, x and y are in meters, and t is in seconds. (a) Determine …
7. physics

At a certain instant, a particle-like object is acted on by a force F = (4.0 N) ihat - (3.0 N) jhat + (9.0 N) khat while the object's velocity is v = - (2.0 m/s) ihat + (4.0 m/s) khat. What is the instantaneous rate at which the force …
8. physics

At the instant the displacement of a 2.00 kg object relative to the origin is d = (2.00 m) ihat + (4.00 m) jhat - (3.00 m) khat, its velocity is v = - (6.20 m/s) ihat + (2.70 m/s) jhat + (2.60 m/s) khat, and it is subject to a force …
9. physics

A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector vector r = (2.00 m)ihat - (3.00 m)jhat + (2.00 m)khat, the force is vector F = Fxihat + (7.00 N)jhat - (5.30 N)khat …
10. physics

A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector vector r = (2.00 m)ihat - (3.00 m)jhat + (2.00 m)khat, the force is vector F = Fxihat + (7.00 N)jhat - (5.30 N)khat …

More Similar Questions