sorry the first one I put in had a typo

cosx/1-tanx + sinx/1-cotx = sinx +cosx

prove that it is an identity I assume ??

General rule to start:
1. begin with the complicated side and simplify it
2. change all trig ratios to sines and cosines if possible, unless an obvious relation can be seen

LS
= cosx/(1-sinx/cosx) + sinx/(1 - cosx/sinx)
= cosx/[(cosx - sinx)/cosx] + sinx/[(sinx-cosx)/sinx]
= cosx (cosx)/(cosx - sinx) - sinx (cosx - sinx)
= (cos^2 x - sin^2 x)/(cosx - sinx)
= (cosx - sinx)(cosx+ sinx)/(cosx - sinx)
= cosx + sinx
= RS

5th last line should say

= cosx (cosx)/(cosx - sinx) - sinx (sinx)(cosx - sinx)

Thanks!

No problem! Let's simplify the given expression:

cosx / (1 - tanx) + sinx / (1 - cotx) = sinx + cosx

First, let's simplify the left side of the equation. To do this, we need to rationalize the denominators.

Recall that tanx = sinx / cosx and cotx = cosx / sinx.

So, the expression becomes:

cosx / (1 - sinx / cosx) + sinx / (1 - cosx / sinx)

To simplify, we'll find the least common denominator (LCD) for the two fractions. In this case, the LCD is cosx * sinx.

For the first fraction, we multiply the numerator and denominator by cosx:

(cosx * cosx) / (cosx - sinx)

Similarly, for the second fraction, we multiply the numerator and denominator by sinx:

(sinx * sinx) / (sinx - cosx)

Now we can add the fractions:

[(cosx * cosx) / (cosx - sinx)] + [(sinx * sinx) / (sinx - cosx)]

To simplify this further, we need to combine the terms over a common denominator.

Multiply the numerator of the first fraction by (sinx - cosx) and the numerator of the second fraction by (cosx - sinx):

[(cosx * cosx) * (sinx - cosx) + (sinx * sinx) * (cosx - sinx)] / [(cosx - sinx) * (sinx - cosx)]

Expanding and simplifying the numerator:

[(cosx * cosx * sinx) - (cosx * cosx * cosx) + (sinx * sinx * cosx) - (sinx * sinx * sinx)] / [(cosx - sinx) * (sinx - cosx)]

Rearranging terms:

[(cosx * cosx * sinx) + (sinx * sinx * cosx) - (cosx * cosx * cosx) - (sinx * sinx * sinx)] / [(cosx - sinx) * (sinx - cosx)]

Now, factor out a negative from the last two terms of the numerator:

[(cosx * cosx * sinx) + (sinx * sinx * cosx) - (cosx * cosx * cosx) - (sinx * sinx * sinx)] / [(cosx - sinx) * (cosx - sinx)]

We can notice that the numerator is the same as the denominator:

[(cosx * cosx * sinx) + (sinx * sinx * cosx) - (cosx * cosx * cosx) - (sinx * sinx * sinx)] = [(cosx - sinx) * (cosx - sinx)]

Canceling out the common terms:

[(cosx - sinx) * (cosx - sinx)] / [(cosx - sinx) * (cosx - sinx)]

Now, the (cosx - sinx) terms in the numerator and denominator cancel out:

1

Therefore, the simplified expression is equal to 1:

cosx / (1 - tanx) + sinx / (1 - cotx) = 1