math
posted by alana .
use spherical coordinates to evaluate the triple integral of
(e^(x^2+y^2+z^2))/(sqrt(x^2+y^2+z^2)dV
where E is the region bounded by the spheres
x^2+y^2+z^2=49 and
x^2+y^2+z^2=81???

Integrate
exp(r^2)/r 4 pi r^2 dr from r = 7 to r = 9
Respond to this Question
Similar Questions

Calculus
Find the volume of the solid whose base is the region in the xyplane bounded by the given curves and whose crosssections perpendicular to the xaxis are (a) squares, (b) semicircles, and (c) equilateral triangles. for y=x^2, x=0, … 
calculus
1. Find the area of the region bounded by f(x)=x^2 +6x+9 and g(x)=5(x+3). Show the integral used, the limits of integration and how to evaluate the integral. 2. Find the area of the region bounded by x=y^2+6, x=0 , y=6, and y=7. Show … 
Calculus
Evaluate, in spherical coordinates, the triple integral of f(rho,theta,phi)=cos (phi) , over the region 3<rho<7, 0<theta<2pi, 0<phi<pi/3. I used the equation cos (phi)*sin(phi)*rho d(rho)d(phi)d(theta) with the given … 
Calculus
Evaluate the integral by changing to spherical coordinates. The outer boundaries are from 0 to 1. The middle one goes from sqrt(1x^2) to sqrt(1x^2) The inner one goes from sqrt(1x^2z^) to sqrt(1x^2z^) for 1/sqrt(x^2+y^2+z^2) … 
Calculus
Evaluate the integral by changing to spherical coordinates. The outer boundaries are from 0 to 1. The middle one goes from sqrt(1x^2) to sqrt(1x^2) The inner one goes from sqrt(1x^2z^) to sqrt(1x^2z^) for 1/sqrt(x^2+y^2+z^2) … 
MATH
(a) Transform the expression (x − a)^2 + y^2 = a^2 into polar coordinates. (b) Sketch the region R bounded by the curve given in part (a). (c) Use a double integral in polar coordinates to ﬁnd the area of the region R. 
calc 3
1. Evaluate the given integral by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse 36x^2+25y^2=1. L= double integral R (4sin(144x^2+100y^2) dA. 2. Use the given transformation … 
Calculus check
The functions f and g are given by f(x)=sqrt(x^3) and g(x)=162x. Let R be the region bounded by the xaxis and the graphs of f and g. A. Find the area of R. B. The region R from x=0 to x=4 is rotated about the line x=4. Write, but … 
Calc
Use spherical coordinates. Evaluate Triple integral SSSE where E lies between the spheres x^2 + y^2 + z^2 = 25 and x^2 + y^2 + z^2 = 49 in the first octant. 
calculus review please help!
1) Find the area of the region bounded by the curves y=arcsin (x/4), y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative. 2)Set up, but do not evaluate, the …