Post a New Question

pre. cal.

posted by .

Find the least integral upper bound of the zeros of the function f(x) = x^3 - x^2 + 1?

I got... The least upper bound of the zeros of f(x) is -0.7549

  • pre. cal. -

    as you found out, there are no integral zeros of the function.
    There is only one real intercept and you found that correctly. (how did you find that anyway ?)

    My guess would be that they want the next lowest integer value to that zero, perhaps -1 ??? or is it 0 ??

    not sure about the wording though.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

More Related Questions

Post a New Question