Post a New Question

physics

posted by .

A 9.3 kg firework is launched straight up and at its maximum height 45 m it explodes into three parts. Part A (0.5 kg) moves straight down and lands 0.29 seconds after the explosion. Part B (1 kg) moves horizontally to the right and lands 10 meters from Part A. Part C moves to the left at some angle. How far from Part A does Part C land (no direction needed)?

  • physics -

    I will be happy to critique your work, when shown. This is an exercise in applying Newton's second law.

  • physics -

    1. Momentum for part A:
    y = (Vo)t - (1/2)(9.8m/s^2)t^2
    Substitute the values for y and t which are given. Solve for Vo, the initial downward velocity. Multiply the value of Vo by 0.5 kg to get the initial momentum down of A.
    2. Momentum for part B:
    y = (1/2)gt^2 = 45m for its downward motion.
    substitute the value of g and solve for t.
    Vx = 10m/t
    Now you can calculate the momentum of B
    3. Resultant of the two momentums:
    Do a vector addition of the momentums of A and B. The resultant will be a vector downward to the right. Determine both, magnitude and direction.
    4. Momentum of part C:
    That is opposite (equilibrant) of of the vector sum of A and B. Determine it.
    Divide the momentum of C by its mass to get the initial velocity of C. That will make part C a projectile at an upward angle. It will be tricky solving this part since it lands 45 meters below the point of "launching".
    Best of luck.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

More Related Questions

Post a New Question