calculus
posted by kenneth .
use euler's method with delta x=0.1 to estimate y when x=0.4 for the solution curves satisfying y(0)=1 and y(1)=0.
I made the table but i don't know what values to use or plug in.

x y delta y = dy/dx*delta x
o 1 1*0.1=0.1
Respond to this Question
Similar Questions

calculus 2
Use euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem y'= 3x+y^2, y(0)=1 
calculus 2
Use euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem y'= 3x+y^2, y(0)=1 
calculus
Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem. y' = 5x + y^2, y(0)=1. 
CAL 2
Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem y'=5x+y^2, y(0)=1 y(1)= 
Cal
Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem. y' = 5x + y^2, y(0)=1. y(1)= 
calculus
Use Euler's method with step size .2 to estimate y(.4), where y(x) is the solution of the initial value problem y=x+y^2, y=0. Repeat part a with step size .1 
Euler's method help in Calculus?????
Let dy/dx=xy . Use Euler's method with step size of 0.5 and the initial condition of y(0) = 3 to estimate y(2). I really am not sure if I did this right, but I got 3.4568 for y(2). I actually feel like it is wrong. 
calculus
Hello! Just needed help with understanding this specific question. We never really wet over Euler's method so I'm not sure how to go about it. "Use Euler's method in order to solve the initial value problem below. dy/dx = x3 and y=4 … 
Calculus
Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem given below. (Round your answer to four decimal places.) y' = 1 − xy y(0) = 0 I don't even know how to start! 
calculus 2
Use Euler's method with a step size of 0.2 to estimate y(1), where y(x) is the solution of the initial value problem y' = 6x+y^2, y(0)=0. Round your final answer to 4 places, but keep more places on the intermediate steps for accuracy.