calc
posted by Michael .
What is the integral of 20 * (sinx)^3 * (cosx)^2?

calc 
Reiny
y' = 20 * (sinx)^3 * (cosx)^2
= 20 sinx(sinx)^2(cosx)^2
= 20sinx(1  cos^2 x)cos^2 x
= 20sinx cos^2 x  20sinx cos^4 x
y = 20/3(cos^3 x) + 20/3(cos^5 x) + C, where C is a constant 
calc 
Damon
let u = sin^2 x
then du = 2 sin x cos x dx
let dv = 3 sin x cos^2 x dx
then v = cos^3 x
u dv = 3 sin^3 x cos^2 x dx
so
let u = 20/3 sin^2 x
then du = 40/3 sin x cos x dx
let dv = (1/3)sin x cos^2 x dx
then v = cos^3 x
now by parts
int u dv = u v  int v du
int (20 sin^3 x cos^2 x dx) =
(20/3)sin^2 x cos^3 x +(40/3)int(cos^4 x sin x dx)
well remember the first term at the end and the (40/3) and work on the integral
int cos^4 x sin x dx = (1/5)cos^5 x
I think you can get it from there
Respond to this Question
Similar Questions

Math
Verify the identity . (cscXcotX)^2=1cosX/1+cosX _______ sorry i cant help you (cscXcotX)=1/sinX  cosX/sinX = (1cosX)/sinX If you square this you have (1cosX)^2/(sinX)^2 Now use (sinX)^2 = 1  (cosX)^2 to get (1cosX)^2 / 1  … 
PreCalc
Trigonometric Identities Prove: (tanx + secx 1)/(tanx  secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x  1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1  cosx)/cosx)/((sinx … 
Trigonometry.
( tanx/1cotx )+ (cotx/1tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side … 
Trig........
I need to prove that the following is true. Thanks (cosx / 1sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1sinx) multiply top and … 
Precalc
prove the identity: (cosx)(tanx + sinx cotx)=sinx+cos(squared)x i need steps to show how i got the answer generally, it is a good idea to change all trig ratios to sines and cosines, and start with the more complicatedlooking side. … 
Calculus
I don't know if I did these problems correctly. Can you check them? 
Calculus
Use the symmetry of the graphs of the sine and cosine functions as an aid in evaluating each definite integral. (a) Integral of sinx*dx from pi/4 to pi/4 (b) Integral of cosx*dx from pi/4 to pi/4 (c) Integral of cosx*dx from pi/2 … 
Math  Pre Clac
Prove that each of these equations is an identity. A) (1 + sinx + cos x)/(1 + sinx + cosx)=(1 + cosx)/sinx B) (1 + sinx + cosx)/(1  sinx + cosx)= (1 + sin x)/cosx Please and thankyou! 
Trigonometry Check
Simplify #3: [cosxsin(90x)sinx]/[cosxcos(180x)tanx] = [cosx(sin90cosxcos90sinx)sinx]/[cosx(cos180cosx+sinx180sinx)tanx] = [cosx((1)cosx(0)sinx)sinx]/[cosx((1)cosx+(0)sinx)tanx] = [cosxcosxsinx]/[cosx+cosxtanx] = [cosx(1sinx]/[cosx(1+tanx] … 
trigonometry
can i use factoring to simplify this trig identity?