# Trigonometry

posted by .

Prove that (3cos^2x + 8sinx-8/cos^2x) = (3sinx-5/sinx+1)

• Trigonometry -

your lack of the proper use of brackets make your equation much too ambiguous.

Furthermore, the brackets you do use, make no difference to the meaning.
If they are removed, there is no change in the order of operation, but ....

on the left side, who is divided by cos^2 x ?
is it -8/cos^2 x ? or
(8sinx-8)/cos^2 x or
(3cos^2x + 8sinx-8)/cos^2 x

each would give you a different result, the same is just as confusing on the right side.

• Trigonometry -

(3cos^2x + 8sinx-8)/cos^2x = (3sinx-5)/sinx+1

• Trigonometry -

LS = (3(1-sin^x) + 8x - 8)/cos^2x
= (3-3sin^x+8x-8)/cos^2x
= -(3sin^2x - 8x + 5)/((1-sinx)(1+sinx))
= -(3sinx-5)(sinx-1)/((1-sinx)(1+sinx))
= (3sinx-5)(1 - sinx)/((1-sinx)(1+sinx))
= (3sinx-5)/(1+sinx)
= RS

## Similar Questions

1. ### Trig

prove the identity (sinX)^6 +(cosX)^6= 1 - 3(sinX)^2 (cosX)^2 sinX^6= sinx^2 ^3 = (1-cosX^2)^3 = (1-2CosX^2 + cos^4) (1-cosX^2) then multiply that out 1-2CosX^2 + cos^4 - cosX^2 + 2cos^4 -cos^6 add that on the left to the cos^6, and …
2. ### Pre-Calc

Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
3. ### Maths

Solve this equation fo rx in the interval 0<=x<=360 3sinxtanx=8 I would do it this way: sinxtanx = 8/3 sinx(sinx/cosx)=8/3 sin^2x/cosx = 8/3 (1-cos^2x)/cosx=8/3 cross-multiply 3 - 3cos^2x = 8cosx 3cos^2x + 8cosx - 3 = 0 (3cosx-1)(cosx+3)=0 …
4. ### Trigonometry.

( tanx/1-cotx )+ (cotx/1-tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side …
5. ### Trig........

I need to prove that the following is true. Thanks (cosx / 1-sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1-sinx) multiply top and …
6. ### Mathematics - Trigonometric Identities

Prove: sin^2x - sin^4x = cos^2x - cos^4x What I have, LS = (sinx - sin^2x) (sinx + sin^2x) = (sinx - 1 -cos^2x) (sinx + 1 - cos^2x) = sin^2x + sinx - sinx - cos^2xsinx - cos^2xsinx - 1 - 1 + cos^4x = sin^2x - 2cos^2xsinx - 2 + cos^4x …
7. ### Math

1. Find y'(x) when xsecy - 3y sinx = 1 a) (3ycosx - sec y) / (xsec^2y - 3sinx) b) (3cosx - sec x) / (xsecytany - 3sinx) c) (3ycosx - sec y) / (xsecytany - 3sinx) d) (3ycosx - secytany) / xsec^2y - 3sinx) This is what I did: xsecy - …
8. ### Trig Help

Prove the following: [1+sinx]/[1+cscx]=tanx/secx =[1+sinx]/[1+1/sinx] =[1+sinx]/[(sinx+1)/sinx] =[1+sinx]*[sinx/(sinx+1)] =[sinx+sin^2x]/[sinx+1] =[sinx+(1-cos^2x)]/[sinx+1] =?
9. ### Trigonometry

Prove the following trigonometric identities. please give a detailed answer because I don't understand this at all. a. sin(x)tan(x)=cos(x)/cot^2 (x) b. (1+tanx)^2=sec^2 (x)+2tan(x) c. 1/sin(x) + 1/cos(x) = (cosx+sinx)(secx)(cscx) d. …
10. ### Calculus

Find the derivatives of the following 18. y=〖cos〗^4 x^4 ANSWER: tanx2 19. y= sinx/(1+ 〖cos〗^2 x) ANSWER: 3sinx 20. y=sinx(sinx+cosx) ANSWER: sinx Can you check my answers?

More Similar Questions