Math
posted by Amanda .
Let V={f(x)=c0 + c1x + c2x2 : ç01 f(x)dx=1}. In other words, V is the set of all polynomials of degree 2 or less such that their integral from 01 is equal to 1.
a)Show that the sum of two polynomials in V is not in V
b)Show that an affine combination of two polynomials in V is in V
c)Give a parametric description of the polynomials in V
Respond to this Question
Similar Questions

collegeLinear Algebra
Let V={f(x)=c0 + c1x + c2x2 : ç01 f(x)dx=1}. In other words, V is the set of all polynomials of degree 2 or less such that their integral from 01 is equal to 1. a)Show that the sum of two polynomials in V is not in V b)Show that … 
math
Let S be the set of all measurable functions on [0,1]. Then the set O of all functions in S equal to 0 a.e on [0,1] makes an additive subgroup of a commutative group S. Show that S/O with the distance p(f,g)=indefinite integral(0,1)((f(x)g(x))/(1+f(x)g(x)))dx … 
Math Word Problem
Let A be the set containing all rational numbers that are less than 5. Is there a rational number q in set A such that all other numbers in set A are less than q? 
math
True or False? 1. The product of 2 linear polynomials is quadratic 2. The sum of two cubic polynomials cannot have a degree greater than 3. 3. The sum of two cubic polynomials may have a degree less than 3. 4. The sum of a cubic and 
Linear Algebra
Let W be the set of all polynomials p(t) in P3 such that p(0)=0. Show that W is a subsapce of P3 and find a basis. 
Calculus II
Fed loves polynomials with rational coefficients and only such polynomials.Suppose f(x)=square root of x. Find a polynomial P(x) that Fred will adore so that, for any x in the interval [3,5], the difference between P(x) and f(x) is … 
math
For every prime p consider all polynomials f(x) with integer coefficients from 1 to p and degree at most p−1, such that for all integers x the number f(2x)−f(x) is divisible by p. Find the sum of all primes p<1000 such … 
math
For every prime p consider all polynomials f(x) with integer coefficients from 1 to p and degree at most p−1, such that for all integers x the number f(2x)−f(x) is divisible by p. Find the sum of all primes p<1000 such … 
calc ii
if we know that 12 is less than or equal to f(x) which is less than or equal to 18, what can be say about this inequality? 
math
Consider an equilateral triangle with points located at each vertex and at each midpoint of a side. (See picture.) This problem uses the set of numbers {1, 2, 3, 4, 5, 6}. Place one number at each point. Call the sum of the three numbers …