# Calculus

posted by .

integral 0 to sqrt(3) dx/sqrt(4-x^2)
I don't understand why the answer is pi/6. I get pi/3. Thanks for the help!

Work:
u=x/2 du=1/2dx 2du=dx
2/2sqrt(1-u^2)

sin^-1(x/2)
sin^-1(sqrt(3)/2)= pi/3

• Calculus -

Integral of dx/sqrt(4-x^2
Let x = 2u and that becomes
2 du/sqrt(4 - 4u^2)
Integral of du/(sqrt(1-u^2)
= sin^1 u = sin^-1(x/2)

OK so far.. sin-1(sqrt3/2) - sin^-1 0
= pi/3

## Similar Questions

1. ### calc check: curve length

Find the length of the curve y=(1/(x^2)) from ( 1, 1 ) to ( 2, 1/4 ) [set up the problem only, don't integrate/evaluate] this is what i did.. let me know asap if i did it right.. y = (1/(x^2)) dy/dx = (-2/(x^3)) L = integral from a …
2. ### Calculus - Second Order Differential Equations

Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 y'(0)=4, …
3. ### Calculus - Second Order Differential Equations

Posted by COFFEE on Monday, July 9, 2007 at 9:10pm. download mp3 free instrumental remix Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 …
4. ### Calculus

Please look at my work below: Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 …
5. ### Math/Calculus

Solve the initial-value problem. Am I using the wrong value for beta here, 2sqrt(2) or am I making a mistake somewhere else?
6. ### calculus

Calculate definite integral of dx/(x^4 * sqrt(x^2 + 3)) Over (1,3) I start with the substitution x = sqrt(3)*tan t so: sqrt(x^2 + 3) = sqrt(3) * sec t dx = sqrt(3) * sec^2 t dt x^4 = 9 * tan^4 t The integral simplifies to: = dt/(tan^3 …
7. ### Calculus

Evaluate the indefinite integral: 8x-x^2. I got this but I the homework system says its wrong:sqrt((-x-8)x)/(2*sqrt(x-8)*sqrt(x))*(((sqrt(x-8)*(x-4)*sqrt(x))-32*log(sqrt(x-8)+sqrt(x))
8. ### Calculus

S=Integral xdx/sqrt(x-1). I have proceeded thus- Put sqrt(x-1)=u then x=u^2+1 and dx/sqrt(x-1)=2du. S=(u^2+1)2du/u =(2u+2/u)du=u^2+2 log u +C =(x-1)+ 2 log sqrt(x-1)=(x-1)+log(x-1)+C Required answer is 2/3*(x+2)sqrt(x-1)+C Have I proceeded …
9. ### calc 1

When graphing the integral of sin(x^2) is there a way to shift the graph vertically, without just tacking "+c" on the end?
10. ### Algebra

Evaluate sqrt7x (sqrt x-7 sqrt7) Show your work. sqrt(7)*sqrt(x)-sqrt(7)*7*sqrt(7) sqrt(7*x)-7*sqrt(7*7) sqrt(7x)-7*sqrt(7^2) x*sqrt 7x-49*x ^^^ would this be my final answer?

More Similar Questions