trig

posted by .

Sec(2a0)=Sec^a/2-sec^2a

• trig -

looks like nobody has been able to decipher your typing.

At least I don't know what your equation says. (there are at least 3 ways I could read the right side of your equation, and the left side makes even less sense)

Similar Questions

1. Integration

Intergrate ¡ì sec^3(x) dx could anybody please check this answer. are the steps correct?
2. calculus

find dy/dx y=ln (secx + tanx) Let u= secx + tan x dy/dx= 1/u * du/dx now, put the derivative of d secx/dx + dtanx/dx in. You may have some challenging algebra to simplify it. Use the chain rule. Let y(u) = ln u u(x) = sec x + tan x …
3. Trig

Find secx if sinx = -4/5 and 270 < x < 360. tan^2x+1=sec^2x (-4/5)^2+1=sec^2x 16/25+1=sec^2x 17/25=sec^2x sqrt 17/5 I don't know if it should be positive or negative.

2- given the curve is described by the equation r=3cos ¥è, find the angle that the tangent line makes with the radius vector when ¥è=120¨¬. A. 30¨¬ B. 45¨¬ C. 60¨¬ D. 90¨¬ not sure A or D 2.) which of the following represents …
5. calculus (check my work please)

Not sure if it is right, I have check with the answer in the book and a few integral calculators but they seem to get a different answer ∫ sec^3(x)tan^3(x) dx ∫ sec^3(x)tan(x)(sec^2(x)-1) dx ∫ tan(x)sec(x)[sec^4(x)-sec^2(x)] …
6. Calculus AP

I'm doing trigonometric integrals i wanted to know im doing step is my answer right?
7. Calculus

Solve: The posistion of a particle moving along a coordinate line is s=sqrt(5+4t), with s in meters and t in seconds. Find the particle's velocity at t=1 sec. A) 2/3 m/sec B) 4/3 m/sec C) -1/3 m/sec D) 1/6 m/sec Thank you!
8. Math

Starting from 130 feet away, a person on a bicycle rides towards a checkpoint and then passes it. The rider is traveling as a constant rate of 25 feet per second. The distance between the bicycle and the checkpoint is given by the …
9. Math

Starting from 130 feet away, a person on a bicycle rides towards a checkpoint and then passes it. The rider is traveling as a constant rate of 25 feet per second. The distance between the bicycle and the checkpoint is given by the …
10. Math

starting from 105 feet away a person on a bicycle rides towards a checkpoint and then passes it. the rider is traveling at a constant rate of 35 feet per second. The distance between the bicycle and the checkpoint is given by the equation …

More Similar Questions