Physics
posted by Andrea .
A block oscillates on a spring and passes its equilibrium position with a speed of .157m/s. It's kinetic energy is zero when the block is at the distance of .1m from equilibrium. Assume no friction between the block and the table.
v=.157m/s
KE =0J when x=.1m
a)First I need to find the period of the oscillation:
1/2 mv^2=1/2 k (.1)^2
solve for m/k
m/k=.405
T=2pi*sqrt(m/k)
=2pi*sqrt(.405)
=4 s
b) what's the mass displacement from the equilibrium when its velocity v=v_mx/2?
x_max=sqrt(3/4)*(.1m)
x_max= .0866m
c) what's the spring constant if the restoring force acting on the mass when its velocity v=v_max/2 is 8.67N?
F=kx
8.67N=k(.0866m)
k=100N/m
d) what's the acceleration of the mass when v=v_max/2?:
i know that F=ma
a=F/m
Given that m/k= .405 and k=100 N/m to find m would I mulitiply .405 by 100 This would give me 40.5kg.
Finally to solve the problem a=8.67N/40.5kg= .21m/s
e)What is the KE of the mass when velocity v= v_max/2?
Isn't KE=1/2mv^2
=1.2(40.5kg)(.157m/s)^2
=.123J
f)What is the PE of the mass when velocity v= v_max/2?
PE= 1/2kx^2
=1/2(100N/m)(.0866m)^2
=.281J
Are these correct?
Respond to this Question
Similar Questions

physics
a 2.00 kg block is attached to a spring of force constant 500 N/m. The block is pulled 5.00 cm to the right of equilibrium and released from rest. Find the speed of the block as it passes through equilibrium if a) the horizontal surface … 
physics
A moving 1.60 kg block collides with a horizontal spring whose spring constant is 295 N/m. The block compresses the spring a maximum distance of 3.50 cm from its rest position. The coefficient of kinetic friction between the block … 
Physics
A block oscillates on a spring and passes its equilibrium position with a speed of .157m/s. It's kinetic energy is zero when the block is at the distance of .1m from equilibrium. Assume no friction between the block and the table. … 
Physics
A block oscillates on a spring and passes its equilibrium position with a speed of .157m/s. It's kinetic energy is zero when the block is at the distance of .1m from equilibrium. Assume no friction between the block and the table. … 
Physics
A block oscillates on a spring and passes its equilibrium position with a speed of .157m/s. It's kinetic energy is zero when the block is at the distance of .1m from equilibrium. Assume no friction between the block and the table. … 
Physics
A moving 4.80 kg block collides with a horizontal spring whose spring constant is 243 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block … 
physics
A moving 3.20 kg block collides with a horizontal spring whose spring constant is 224 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block … 
Physics
A moving 3.20 kg block collides with a horizontal spring whose spring constant is 224 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block … 
Physics
A moving 3.20 kg block collides with a horizontal spring whose spring constant is 224 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block … 
physics
A block of mass 4kg hangs from a spring of force constant 400N/m.the block is pulled down 15cm below the equilibrium position and released. Fimd: a) amplitude, frequency and period of vibration. b) kinetic energy when the block is …