Precalc

posted by .

Find the values of x between (or equal to) 0 and 360 degrees to satisfy each equation.

arcsin1/2=x
I got 30 degrees as one angle, but how do I find the second one?

arccot1=x
Is the answer 45 degrees?

Also,

Find each value:

arccos(-1/2)


and

sin(2 sin^-1 1/2)

Thanks in advance. Even a little help is appreciated.

  • Precalc -

    ALWAYS draw the problem
    sketch your origin and x,y axes
    now you can see that for a unit hypotenuse, the opposite side (y) is positive in guadrants one and two,\.
    so 30 degrees is one answer
    and 30 degrees above the -y axis is the other place where sin = 1/2
    that is of course 180 - 30 = 150 degrees

    now if cotangent is one, tangent is one.
    so sure, 45 degrees will do.
    BUT where else is y/x positive?
    It is where both x and y are negative, quad 3
    so 180 + 45 = 2556 is second answer

    I think you can take it from there. Sketch your four quadrants and then your x and y

  • Precalc -

    sines are positive in the first and second quadrant. If sin A = 1/2, A can be wither 30 or 150 degrees. The absolute value of sin, cost and tan etc. are determined by the angle with the horizontal axis.

    cot and tan are negative in the second and fourth quadrants, and positive in the first and third quadrants.
    cot^-1(1) = 45 or 225 degrees

    cosine is negative in second and third quadrants.
    cos-1(-1/2) = 120 and 240 degrees (60 degrees from the -x axis)

    sin(2 sin^-1 1/2) = sin 2*30 or sin 2*150 = +0.866 or -0.866, since there are twqo possible values for sin^-1 (1/2)

  • Precalc -

    "arcsin1/2=x

    I got 30 degrees as one angle, but how do I find the second one?"

    There is only one angle and it is 30 degrees. Don't confuse arcsin(1/2) with the set of the solutions of the equation sin(x) = 1/2.

    It is similar to solving the equation:

    x^2 = 4

    and the squareroot function, in this case sqrt(4). The solution of the equation x^4 = 4 is not unique, there are two solutions: x = 2 and x = -2. So, there are two possible inverse functions that one can define. One has to make some choice. The squareroot function is defined as the postive solution of the equation. So sqrt(4) = 2 and not -2.

    You can imagine what a terrible mess it would be if the two possible definitions were both used.

    Similarly, one has defined the arcsin function such that it gives ONE of the solutions of the equation
    sin(x) = y. By definition arcsin(y) is that solution of sin(x) = y that lies in the range between -pi/2 and pi/2.

  • Precalc -

    but the question asked:

    " Find the values of x between (or equal to) 0 and 360 degrees to satisfy each equation.

    arcsin1/2=x "

    Which is not exactly what is arcsin(1/2)

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math

    how to define arc cosine(cosine x) for -360 deg<x< 360 deg?
  2. Pre-calculus

    Find the values of x in the interval 0<=x<360 that satisfy the equation x=arcsin squareroot of 2/2. Express your answer in degrees. 360 degrees - 45=315 degrees. Is this right?
  3. Math

    1) Find two values of Q that satisfy the equation. Give your answer is degrees and radians. Do not use a calculator. a) sec Q = 2 -pi/3 and 60 degrees Is this correct?
  4. Pre-cal

    1) Find two values of Q that satisfy the equation. Give your answer is degrees and radians. Do not use a calculator. a) sec Q = 2 -pi/3 and 60 degrees Is this correct?
  5. trig

    find to the nearesr degree, all values of x between 0 degrees and 360 degrees that satisfy the equation 2sinx + 4 cos 2x =3
  6. math

    find the angle that is coterminal to 525 degrees and lies between 0 degrees and 360 degrees?
  7. Trigonometry

    Solve the following trig equations. Give all positive values of the angle between 0 degrees and 360 degrees that will satisfy each. Give any approximate value to the nearest minute only. 3 sin è - 4 cos è = 2 Can you please help …
  8. trig

    what are the values of theta in the interval 0 degrees is lessthan or equal to theta is less than or equal to 360 degrees that satisfy the equation tan theta minus square root of 3 equals 0?
  9. Calculus

    Determine the measure of A if 0 degrees is less or equal to angle A and if angle A is less or equal to 360 degrees. Tan A = 0 Answer is somehow supposed to be 0 degrees, 180 degrees, and 360 degrees, but don't know how to get the answer, …
  10. trig

    find two values of theta, zero degrees is than or equal to theta which is less than 360 degrees, that satisfy the given trigonometric equation. tan theta equals radical 3.

More Similar Questions