Physics
posted by Ava .
A man stands on the roof of a 10.0 tall building and throws a rock with a velocity of magnitude 30.0 at an angle of 38.0 above the horizontal. You can ignore air resistance.
Calculate the horizontal distance from the base of the building to the point where the rock strikes the ground.

This problem was posted before, perhaps by you, since "10.0" is still written instead of 10.0 meters. You need to say what the dimensions are.
As I said in my previous answer, the kinetic energy increase by M g H, where H = 10 meters. Since kinetic energy is (1/2) m V^2, you can divide out the Mass and say that V^2 increases by gH. g is the acceleration of gravity. 
I meant to write (as I did when you asked the question before):
V^2 increases by 2gH.
g is the acceleration of gravity.
Therefore
Vfinal^2 = 30^2 + 2*9.8*10 = 1096 m^2/s^2
Vfinal = 33.1 m/s
Respond to this Question
Similar Questions

Physics
A man stands on the roof of a 19.0 mtall building and throws a rock with a velocity of magnitude 24.0 m/s at an angle of 38.0 degrees above the horizontal. You can ignore air resistance. Calculate the maximum height above the roof … 
physics
A man stands on the roof of a 10.0 tall building and throws a rock with a velocity of magnitude 24.0 at an angle of 42.0 above the horizontal. You can ignore air resistance. Calculate the magnitude of the velocity of the rock just … 
physics
A man stands on the roof of a 19.0 mtall building and throws a rock with a velocity of magnitude 30.0 m/sat an angle of 42.0 degrees above the horizontal. You can ignore air resistance. Calculate the maximum height above the roof … 
physices
A man stands on the roof of a building of height 13.8 and throws a rock with a velocity of magnitude 29.3 at an angle of 34.8 above the horizontal. You can ignore air resistance 
physics
A man stands on the roof of a 19.0 m tall building and throws a rock with a velocity of magnitude 30.0 m/s at an angle of 30.0 degrees above the horizontal. Ignore air resistance. Calculate the horizontal distance from the base of … 
physics
A man stands on the roof of a 10.0 tall building and throws a rock with a velocity of magnitude 30.0 at an angle of 34.0 above the horizontal. You can ignore air resistance. Calculate the horizontal distance from the base of the building … 
physics
A man stands on the roof of a 10.0 tall building and throws a rock with a velocity of magnitude 30.0 at an angle of 34.0 above the horizontal. You can ignore air resistance. Calculate the horizontal distance from the base of the building … 
physics
a man stands on the roof of a building that is 30m tall and throws a rock with a velocity of magnitude of 40m/s at an angle of 33 degress a bove the horizontal. Calculate the following: a.) The maximum height above the roof reached … 
science
A man stands on the roof of a building of height 15.8m and throws a rock with a velocity of magnitude 25.2m/s at an angle of 32.7∘ above the horizontal. You can ignore air resistance. Part A Calculate the maximum height above … 
physics
a man stands on the roof of a 15.0m tall building and throws a rock with a velocity of magnitude 30.0m/s at an angle of 33 degrees above the horizontal. ignoring resistance calculate the horizontal distance from the base of the building …