AP Physics
posted by Kristen .
A uniform spherical shell of mass M and radius R rotates about a vertical axiss on frictionless bearings. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object mass m. There's not friction on the pulleys axle; the cord doesnt slip on the pulley. Whats the speed of the object after it falls a distance h from rest? Use energy considerations (g=gravity, M=mass M, R=radius R, I=inertia I, r=radius r, and m=mass m)

After falling a distance h, Potential energy m g h is converted to kinetic energy of the rotating shell, the falling mass, and the pulley. Let V be the velcoity of the mass at time t.
The angular velocity of the shell is ws= V/R and its moment of inertia is
Is = (2/3)MR^2
The moment of inertia of the pulley is I, its angular velocity is wp = V/r, and its radius is r.
mgh = (1/2)mV^2 + (1/2)(2/3)MR^2*(V/R)^2 + (1/2) I (V/r)^2
= V^2 [(1/2)m + (1/3)M + (1/2)I/r^2]
V^2 = 2gh/[1 + (2/3)M/m + I/(mr^2)] 
lit dab
Respond to this Question
Similar Questions

AP physics
On Block has a mass M=500 g, the other has mass m=460 g, they are hooked to a string and is on a pulley will one mass on either side, the pulley, which is mounted in horizontal frictionless bearings, has a radius of 5 cm. When released … 
AP physics
A uniform spherical shell of mass M and radius R rotates about a vertical axiss on frictionless bearings. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to … 
physics
A block (mass = 2.9 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.2 x 103 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, … 
physics
A uniform spherical shell of mass M = 8.00 kg and radius R = 0.550 m can rotate about a vertical axis on frictionless bearings. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 0.130 kg·m2 … 
Physics
A particle with a charge of 60.0 nC is placed at the center of a nonconducting spherical shell of inner radius 20.0 cm and outer radius 33.0 cm. The spherical shell carries charge with a uniform density of 2.02 µC/m3. A proton moves … 
Physics
A uniform spherical shell of mass M = 19.7 kg and radius R = 1.62 m rotates about a vertical axis on frictionless bearings. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.02 kg m2 … 
Physics
A 9.00 kg mass is connected by a light cord to a 1.00 kg mass on a smooth surface as shown in the figure. The pulley rotates about a frictionless axle and has a moment of inertia of 0.300 k∙m2 and a radius of 0.500 m. Assuming … 
physics
A 5.00 kg mass is connected by a light cord to a 3.00 kg mass on a smooth surface as shown in the figure. The pulley rotates about a frictionless axle and has a moment of inertia of 0.300 k∙m2 and a radius of 0.500 m. Assuming … 
Physic
A block (mass 2.4 kg) is hanging from a massless cord that is wrapped around a pulley 3 2 (moment of inertia of the pulley = 1.3 x 10 kg·m ), as the drawing shows. Initially the pulley is prevented from rotating and the block is … 
Physics gravity
A thin spherical shell has a radius of 2.4 m and a mass of 410 kg, and its center is located at the origin of a coordinate system. Another spherical shell with a radius of 1 m and mass 135 kg is inside the larger shell with its center …