Respond to this Question
Similar Questions

calc asap!
can you help me get started on this integral by parts? 
calc
is the integral of 2x/(x^3x) =1/2ln(x+1)+1/2ln(x1) I got this by doing this: (\=integral sign) 2\1/(x^21) 2\1/(x+1)(x1) =A/(x+1)+B/(x1) =AxA+Bx+B=1 Ax+Bx=0 BA=1 B=1+A (1+A)x+Ax=0 x+Ax+Ax=0 1+AB=0 2A=1 A=1/2 B+1/2=1, B=1/2 … 
Algebra 2
e^(x2)12^(2x+3)=0 Class is a college level math prep. Sorry for previous post being incomplete. I'm thinking: ln^(x2)=ln12^(2x+3) (x2)ln=(2x+3)ln12 xln2ln=2xln(12)+3ln(12) xln2xln(12)= 2ln+3ln(12) and not sure 
Calculus
Evaluate the indefinite integral integral sec(t/2) dt= a)ln sec t +tan t +C b)ln sec (t/2) +tan (t/2) +C c)2tan^2 (t/2)+C d)2ln cos(t/2) +C e)2ln sec (t/2)+tan (t/2) +C 
Calculus
Write as a single logarithm of a single quantity ln(3)+1/2ln(x+2)4ln(1+sqrtx) 
Calculus
Evaluate (integral) cot 2x dx. A. 1/2Ln sin 2x+C B. 1/2Ln cos 2x+C C. 1/2Ln sec 2x+C D. 1/2LN csc 2x+C 
calc
d/dx (4ln) (2x)sin2x using product rule 
Calculus integral
evaluate the integral: integral from pi/4 to 0 for the function 6sec^3x dx. it has to be an exact answer and i did it and keep getting it wrong. I got 4sqrt(2)4ln(sqrt(2)+1) 
Calculus
I know how to do this problem, but I'm stuck at the arc length differential. Set up an integral for the arc length of the curve. (Do not evaluate the integral) x=y^2ln(y), 1<y<2 dx/dy = 2yln(y) + y ds= sqrt (1 + (2yln(y)+y)^2 … 
Algebra
Use the properties of logarithms to expand the expression. ln y(y+1)^5, I keep coming up with the same answer which is wrong. y^5ln(y)+5y^4ln(y)+10y^3ln(y)+10y^2ln(y)+ln(y)