PHYSICSS!!!
posted by Rory still need help damon and others .
still cant get this one?
so damon i know you wanna help!
or anyone else im open for suggestions
haha
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally weightless. Take the distance between the centers of the Earth and Moon to be 3.72E+5 km and the MoontoEarth mass ratio to be 1.200E2. What is the spaceship's distance from the center of the Moon?
The distance from the moon to this Lagrange point we can call x
Then the distance from the earth to that point is (3.72*10^8  x) meters (note conversion to meters)
the gravitational attraction of the earth on our ship is
G * mass earth * mass ship /(3.72*10^8 x)^2
the gravitational attraction of the moon on our ship is
G *1.200^10^2 mass earth * mass ship /x^2
Set those attractions equal and you have your point. Notice that the gravitational constant G cancels as does the mass of our spaceship.
Solve for x, convert it to kilometers from meters.

yeah i get the whole equation you're telling me to set up but its gets confusing because there ends up being like X^4 because its X^2 on one side and on the other its (3.72*10^8X)^2 so either you lose all the X's or you have X^4
can you help with the algebra? 
Well, what I see is
1/[3.72*10^8  x]^2 = 1.2*10^2/x^2
so
x^2 =1.2*10^2 [3.72*10^8  x]*2
x*2 = 16.6*10^14  8.93*10^6 x + 1.2*10^2 x^2
or
.988 x^2 + 8.93*10^6 x  16.6*10^14 = 0
solve that quadratic and use the positive answer (after checking my arithmetic carefully)
Respond to this Question
Similar Questions

Physics
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally … 
Physics
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally … 
Physics
I still cannot solve this problem: Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly … 
physics
still cant get this one? so damon i know you wanna help! or anyone else im open for suggestions haha Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at 
PHYSICS
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally … 
physics hey damon one more please! =]
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally … 
Physics
A spaceship of mass m travels from the Earth to the Moon along a line that passes through the center of the Earth and the center of the Moon. (a) At what distance from the center of the Earth is the force due to the Earth five times … 
physics
A spaceship of mass m travels from the Earth to the Moon along a line that passes through the center of the Earth and the center of the Moon. (a) At what distance from the center of the Earth is the force due to the Earth three times … 
Physics
A spaceship of mass 175,000 kg travels from the Earth to the Moon along a line that passes through the center of the Earth and the center of the Moon. At what distance from the center of the Earth is the force due to the Earth twice … 
Calculus Physics
Imagine a spaceship on its way to the moon from the earth. Find the point, as measured from the center of the earth, where the force of gravity due to the earth is balanced exactly by the gravity of the moon. This point lies on a line …