Physics
posted by Lindsay .
I still cannot solve this problem:
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally weightless. Take the distance between the centers of the Earth and Moon to be 3.90E+5 km and the MoontoEarth mass ratio to be 1.200E2. What is the spaceship's distance from the center of the Moon?
Bobpursely told me that:
Mm/Me=(d2/d)^2
where mm is mass moon, me mass earth, d2 is distance from craft to moon, and d is the distance from craft to earth.
My online homework site wants me to use ONLY the info given and solve for what I don't have. So I'm trying to get the distance from the craft to earth using the numbers given, but I can't seem to figure it out.

The ratio of distances to the centers of Moon and Earth is the square root of the mass ratio.
Sqrt 0.012 = 0.1095 = d2/d
d + d2 = d + 0.1095 d = 1.0955 d = 3.90*10^5 km
d = 3.56*10^5 km
d2 = 0.39*10^5 km
BobPursley suggested that you use the law of gravity. That is not "new information". it is what you needed to do to solve the problem.
Respond to this Question
Similar Questions

Physics
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally … 
Physics
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally … 
physics
still cant get this one? so damon i know you wanna help! or anyone else im open for suggestions haha Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at 
PHYSICSS!!!
still cant get this one? so damon i know you wanna help! or anyone else im open for suggestions haha Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at 
PHYSICS
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally … 
physics hey damon one more please! =]
Consider a spaceship located on the EarthMoon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally … 
physics
A spaceship of mass m travels from the Earth to the Moon along a line that passes through the center of the Earth and the center of the Moon. (a) At what distance from the center of the Earth is the force due to the Earth three times … 
physics
Locate the position of a spaceship on the EarthMoon center line such that, at that point, the tug of each celestial body exerted on it would cancel and the craft would literally be weightless. What is the distance (in m from the moon) 
Physics
A spaceship of mass 175,000 kg travels from the Earth to the Moon along a line that passes through the center of the Earth and the center of the Moon. At what distance from the center of the Earth is the force due to the Earth twice … 
Calculus Physics
Imagine a spaceship on its way to the moon from the earth. Find the point, as measured from the center of the earth, where the force of gravity due to the earth is balanced exactly by the gravity of the moon. This point lies on a line …