Physics (again, sorry)
posted by Emma .
A swimmer maintains a speed of 0.15 m/s relative to the water when swimming directly toward the opposite shore of a straight river with a current that flows at 0.75 m/s.
(a) How far downstream is the swimmer carried in 1.5 minutes?
(b) What is the velocity of the swimmer relative to an observer on shore?
This involves relative velocity, and that is about the only thing I know.
Can you help with this please? Thank you very much.

Physics (again, sorry) 
Anonymous
While the swimmer is trying to swim across the river he is also carried down
stream because of the velocity of the river. The swimmer has now two
velocities, 0.15 m/s which is the velocity of his swim and 0.75 m/s which is
the velocity of the river. The velocity vx = 0.75 m/s take him down stream
and the velocity vy = 0.15 m/s take him across the river. Since the velocity
of the river is a constant, the distance x the swimmer travels down stream is
given by
x = vxt = 0.75 x 1.5 x 60 = 67.5 m
(b)
The velocity of the swimmer relative to someone on the shore is the resultant
of 0.75 i and 0.15 j. The magnitude of this resultant is:
2 2 1 0.75 0.15 0.76 . m s
−
+ = .
The direction of the resultant is given by 2.0
0.75
15.0
tan = = =
x
y
θ .
Therefore, θ = tan1 0.2 = 11.3o
.
The velocity of the swimmer relative to an observer on the shore = 0.75 m.s
1
at an angle θ = 11.3o
measured counter clockwise with the shore.
Respond to this Question
Similar Questions

Physics
A swimmer heads directly across a river, swimming at 1.10 m/s relative to the water. She arrives at a point 60.0 m downstream from the point directly across the river, 80.0 m wide. What is the speed of the river current? 
physics
A swimmer heads directly across a river, swimming at 1.10 m/s relative to the water. She arrives at a point 52.0 m downstream from the point directly across the river, 72.0 m wide. What is the speed of the river current? 
physics
A swimmer, capable of swimming at a speed of 1.3 m/s in still water (i.e., the swimmer can swim with a speed of 1.3 m/s relative to the water), starts to swim directly across a 2.2kmwide river. However, the current is 0.91 m/s, and … 
physics
A swimmer, capable of swimming at a speed of 1.01 m/s in still water (i.e., the swimmer can swim with a speed of 1.01 m/s relative to the water), starts to swim directly across a 1.47kmwide river. However, the current is 1.01 m/s, … 
Physics
A swimmer heads directly across a river, swimming at 1.9 m/s relative to the water. She arrives at a point 50 m downstream from the point directly across the river, which is 79 m wide. (a) What is the speed of the river current? 
physics
A swimmer heads directly across a river, swimming at 1.2 m/s relative to the water. She arrives at a point 48 m downstream from the point directly across the river, which is 77 m wide. (a) What is the speed of the river current? 
Physics
A swimmer, capable of swimming at a speed of 1.44 m/s in still water (i.e., the swimmer can swim with a speed of 1.44 m/s relative to the water), starts to swim directly across a 2.21kmwide river. However, the current is 0.840 m/s, … 
PHYSICS
A swimmer, capable of swimming at a speed of 1.24 m/s in still water (i.e., the swimmer can swim with a speed of 1.24 m/s relative to the water), starts to swim directly across a 2.24kmwide river. However, the current is 0.553 m/s, … 
physics
A swimmer, capable of swimming at a speed of 1.81 m/s in still water (i.e., the swimmer can swim with a speed of 1.81 m/s relative to the water), starts to swim directly across a 2.29kmwide river. However, the current is 1.31 m/s, … 
physics
A swimmer, capable of swimming at a speed of 1.18 m/s in still water (i.e., the swimmer can swim with a speed of 1.18 m/s relative to the water), starts to swim directly across a 2.16kmwide river. However, the current is 1.19 m/s, …