# CHEMISTRY

posted by .

If a Li 2+ ion, initially in the 2nd excited state absorbs a photon of light with a fequency of 2.82 X 10^6 GHz, what will be the final energy level for this electron? Show all stepts to get final energy level.

i have no clue what this question is even asking :[?

• CHEMISTRY -

I thought I answered this but I don't see my post. The trick is to use the Rydberg formula for the energy levels of Li2+. The Rydberg constant is nine times the value for hydrogen. The frequency of the absorbed light tells you the difference of the energy levels. You get the initial energy level by using n=2 in the Rydberg formula, which says that the energy level is -(constant)/n^2

You will find a full explanation at
http://en.wikipedia.org/wiki/Rydberg_formula

## Similar Questions

1. ### electron

An electron drops from the fourth energy level, in an atom to the third level and then to the first level. Two frequencies of light are emitted. How does their combined energy compare with the energy of the single frequency that would …
2. ### AP CHEMISTRY

If a Li 2+ ion, initially in the 2nd excited state absorbs a photon of light with a fequency of 2.82 X 10^6 GHz, what will be the final energy level for this electron?
3. ### physics

Please help me answer the question below and also show equations and steps of how you came to your answer. Thank you 1. The electron in a hydrogen tom is in the first excited state, when the electron acquires an additional 2.86eV of …
4. ### Physics

Please help me answer the question below and also show equations and steps of how you came to your answer. Thank you 1. The electron in a hydrogen tom is in the first excited state, when the electron acquires an additional 2.86eV of …
5. ### physics

You are shining ultraviolet light on a gas of an unknown element. You know that an electron starts in a ground state with an energy of -19.10 eV. The electron absorbs a 4.00-eV photon. The electron immediately drops to an intermediate …
6. ### chemistry

An electron in the n = 5 excited state of a hydrogen atom emits a photon of 1281 nm light. To what energy level does the electron move?
7. ### physics

Hydrogen atom is initially in the ground state. It is excited by a photon bombardment and it then undergoes a transition from n = 3 to n=2 state. a) What is the frequency of the bombarding photon?
8. ### Chemistry

Energy Level Transfer of Hydrogen's electron. For each line, determine the prinicpal energy level to which hydrogen's electron was excited. When the electron fell to the 2nd level, energy was released corresponding to each of the lines. …
9. ### chemistry

A Li2+ ion had its electron in an excited state. When the electron relaxed to the ground state (n = 1) a photon of light was emitted with an energy of 1.884×10−17 J. What energy level was the electron in before it transitioned …
10. ### Chemistry

An electron initially in the n = 2 energy level in a hydrogen atom absorbs a photon of light with a frequency of 6.167 x 1014 s-1. Calculate the new energy level the electron will occupy. I am not sure how to being.

More Similar Questions