# math

posted by .

Solve the following equations giving any roots in terms of pi in the .......?
interval -2pi ≤ 0 ≤ 2pi.

a) 2cos²Θ + sin²Θ = 0

b) 2cos²Θ + sin²Θ = 1

c) 2cos²Θ + sin²Θ = 2

• math -

First convert cos^2 theta to 1 - sin^2 theta. Then treat sin^2 as a new variable x and solve for that using quadratic equation procedures.

• math -

I will do the last one for you

2cos²Θ + sin²Θ = 2
2cos²Θ + 1 - cos²Θ = 2
cos²Θ = 1
cosΘ = ±1

in degrees, Θ = 0º or 180º or 360º
in radians: Θ = 0 pi or 2pi

## Similar Questions

2Sin(Θ+47°)=1 ΘЄ[0°, 360°) What I did: Sin(Θ+47°)=1/2 Sin 1/2 = Θ+47° 30°+360 = Θ+47° 343° = Θ Ok, so how do i find the other solutions?
2. ### Math-Trig

Trig Questions- 1. Write the algebraic expression which shows Cos((ArcSin(4/X)), 2. Angle If Csc(-Θ)=15/4?
3. ### math-Trig

1. Write the algebraic expression which shows Cos((ArcSin(4/X)), 2. Angle If Csc(-Θ)=15/4?
4. ### Trigonometry

1. Find the exact value of the following (Think identity) Cos(2 Arccos(5/13)) 2. Solve the following equation for 0° ≤ Θ < 360° Sec(Θ)= tan(Θ) + cos(Θ)
5. ### TRIGONOMETRY HELP

Prove that: (tan²Θ)x(sin²Θ) = (tan²Θ)-(sin²Θ) show work
6. ### TRIGONOMETRY HELP

Prove that: cos²Θ - sin²Θ = 2cos²Θ - 1