At 40 degrees C, the value of Kw is 2.92 x 10^-14.

a)Calculate the [H+] and [OH-] in pure water at the same temperature.

b)What is the pH of pure water at that temperature?

I know how to do this with Kw being 1.0 x 10^-14 at 25 degrees C, but how do I do this with a different temperature?

Same process but use the NEW Kw listed at that temperature. pH should be about 6.77. pOH also will be about 6.77.

pH and pOH added together =14.
6.77+6.77=13.54

But, using a pH of 6.77, you get an [H+] of 1.698 and an [OH-] of 1.72 x 10^-14. Is that what you get?

Concept of this is that ..
since you know how to get the H+ concentration at 25 degrees ...
Both H+ concentration and OH- concentration should be equivalent that is why if you square root the Kw of water at 25 degrees you would get 1.0x 10^-7 and thus (1.0x10^-7)2 = 1.0 x10 ^-14 right?

In your case you have a Kw of 2.92x 10^ -14 so....if you square root that ... you get...1.708 x10^-7 for BOTH OH- and H+ concentrations...and the pH of course would be -log (1.708x10^-7)= I trust you can get this now so I'll leave that up to you....

hope it helps...=)

To add to Christina's post, pKw = -log Kw = -log 2.92 x 10^-14 = 13.53 so at pH = pOH = 6.77 then pH + pOH = 6.77 + 6.77 = 13.54. You WON'T get 14 for pKw because it isn't at room temp. That's why Kw isn't listed as 1 x 10^-14.

Thanks so much! I'm having a really hard time with this acid/base stuff!

You're welcome! Understanding acid/base chemistry can be challenging, but with practice and a clear understanding of the concepts, it can become easier to grasp. If you have any more questions or need further explanations, feel free to ask!

You're welcome! Acid-base chemistry can be challenging, but with practice and understanding of the concepts, it will become easier. If you have any more questions or need further clarification, feel free to ask!