# math

posted by Anonymous

Eliminate the parameter (What does that mean?) and write a rectangular equation for (could it be [t^2 + 3][2t]?)

x= t^2 + 3
y = 2t

Without a calculator (how can I do that?), determine the exact value of each expression.

cos(Sin^-1 1/2)

Sin^-1 (sin 7pi/6)

x= t^2 + 3
y = 2t

Eliminate t using the last equation:

t = y/2

insert this in the first equation.

-----------------------------------

arcsin(1/2) = pi/6

cos[arcsin(1/2)] = cos(pi/6) =
1/2 sqrt[3]

Note that the arcsin function is defined as the inverse of the sin function in the interval from minus pi/2 to pi/2.

This means that arcsin(sin(x)) = x

if x is between -pi/2 and pi/2

If x is not in this interval you can use:

sin(x) = sin(x + 2 pi n)

and

sin(x) = sin(pi-x)

E.g. sin(7pi/6) = sin(pi - 7/6 pi) =
sin(-pi/6) therefore:

sin(sin(7pi/6)) = -pi/6

sin(7pi/6) = sin()

Correction:

E.g. sin(7pi/6) = sin(pi - 7/6 pi) =
sin(-pi/6) therefore:

arcsin[sin(7pi/6)] = -pi/6

1. Anonymous

Sin A

## Similar Questions

1. ### precalc

Eliminate the parameter and write the corresponding rectangular equation. X=2cos theta, y=4sin theta
2. ### Math

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve. x = sqrt t y = 1 - t
3. ### Math

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve. x = sqrt t y = 1 - t
4. ### Math

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve. x = secQ Y = tanQ Would I use cos^2Q + sin^2Q = 1?
5. ### Math

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve. x = sec Q y = cos Q x^2 + y^2 = 1/cos^2 + sin^2/cos^2 = x^2(1 +sin^2) = x^2(2-cos^2) x^2(2-1/x^2) = 2x^2 - 1 x^2 - y^2 = 1 My …
6. ### Calc AB

eliminate the parameter and write a rectangular equation for x=(t^2)+3 y=2t
7. ### calculus

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve. x=4+2cos(theta) y=-1+2sin(theta)
8. ### Calculus..

5. Eliminate the parameter and write the corresponding rectangular equations: x=3-2sin theta and y=1+5 cos theta
9. ### Math

Eliminate the parameter in the pair of parametric equations to find the corresponding rectangular question. x=h+ asecQ y=k+ tanQ
10. ### precalc

a circle is formed with a center (-3,5) and a radius.of 4 write the circle as a pair of parametric equations. then show how you can eliminate the parameter to return to the rectangular form

More Similar Questions