# physics

posted by .

When 1180 J of heat are added to one mole of an ideal monatomic gas, its temperature increases from 272 to 292 K. Find the work done by the gas during this process.

I know the specific heat is Q/delta T, so C = (1180 J)/(20K) = 59. This seems like any easy problem, but now I'm stuck on what to do next.

Hmmm. It seems to me you are fishing for answers. Your bait of Q/deltaT is not good enough. Recheck your text.

For a given mass,
Heat in = Work out + delta U
delta U is the change in internal energy. You can calculate it as
Delta U = Cv delta T
where Cv is the specific heat at constant volume. This formula is valid even though your problem may involve a changing volume.
In your monatomic case, Cv = 3/2 R
R = 8.317 J/ mole K is the universal gas constant.
Solve for Work out

• physics -

to solve for work done, cv=3/2R=3/2*8.317=12.4755, deltaU=cv*deltaT =12.4755*20=249.515, Q=W+deltaU, W=Q-deltaU, W=118J-249.515J=930.49J, the workdone is 930.49J, any question call me +2348065434920 for clearification

## Similar Questions

1. ### Physics repost please check

Three moles of an ideal monatomic gas are at a temperature of 345 K. Then, 2531 J of heat are added to the gas, and 1101 J of work are done on it. What is the final temperature of the gas?
2. ### Physics

The temperature of a monatomic ideal gas remains constant during a process in which 4500 J of heat flows out of the gas. How much work (including the proper + or - sign) is done on the gas?
3. ### help me please physics

A monatomic ideal gas expands from point A to point B along the path shown in the drawing. (a) Determine the work done by the gas. J (b) The temperature of the gas at point A is 198 K. What is its temperature at point B?
4. ### physics

when 1240 J of heat are added to one mole of an ideal monatomic gas its temperature increases from 273K to 277K. Find the work done by the gas during the process.
5. ### physics

when 1240 J of heat are added to one mole of an ideal monatomic gas its temperature increases from 273K to 277K. Find the work done by the gas during the process.
6. ### Physics

Three moles of an ideal monatomic gas are at a temperature of 396 K. Then 2438 J of heat is added to the gas, and 897 J of work is done on it. What is the final temperature of the gas?
7. ### Physics

A tank with a constant volume of 3.44 m3 contains 14 moles of a monatomic ideal gas. The gas is initially at a temperature of 300 K. An electric heater is used to transfer 52600 J of energy into the gas. It may help you to recall that …
8. ### Physics

A cylinder with a movable piston contains 14 moles of a monatomic ideal gas at a pressure of 2.26 × 105 Pa. The gas is initially at a temperature of 300 K. An electric heater adds 52600 J of energy into the gas while the piston moves …
9. ### Physics

Suppose that 4.7 moles of a monatomic ideal gas (atomic mass = 8.5 × 10^-27 kg) are heated from 300K to 500K at a constant volume of 0.47 m^3. It may help you to recall that CVCV = 12.47 J/K/mole and CPCP = 20.79 J/K/mole for a monatomic …
10. ### physics

A one mole sample of an ideal monatomic gas at 400 K undergoes an isovolumetric process acquring 550 J of energy by heat. Next it undergoes an isobaric process during which is loses the same amount of energy by heat. Find the work …

More Similar Questions