Calculus
posted by COFFEE .
The hemispherical tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank.

What is shown is just the tank (a hemisphere) with a radius of 5 ft.

First I calculated the Volume of the hemisphere, V = (2/3)*pi*r^3
V = (2/3)*pi*125 = (250/3)*pi
Then I took the integral of: Volume*5y*dy from 0 to 5.
Which equals: ((250/3)*pi)*(5/2)y^2 evaluated at 5 and 0.
I came up with 16362.5 ft*lb.

Am I using the wrong method?
The work required depends upon where the water is extracted. I assume you are pumping out the top.
I don't see why you claim that the energy is
Volume*5y*dy from 0 to 5
The work required is the weight of each differential slab of height dy, multiplied by the distance it must be lifted, 5  y, integrated from 0 to 5. The area of each slab is different. It depends upon y.
Respond to this Question
Similar Questions

Calculus
The hemispherical tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank.  What is shown is just the tank (a hemisphere) with a radius of 5 ft.  … 
Calculus
The tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank. The tank shown is a hemisphere with r = 5 ft. The water is to be pumped out at the top. First I solved … 
Calculus
The tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank. The tank shown is a hemisphere with r = 5 ft. The water is to be pumped out at the top. First I solved … 
Math  Calculus 2
An underground tank full of water has the following shape: Hemisphere  5 m radius. at the bottom Cylinder  radius 5 m and height 10m in the middle Circular cone radius 5 m and height 4 m at the top The top of the tank is 2 m below … 
Calculus 2
An underground tank full of water has the following shape: Hemisphere  5 m radius. at the bottom Cylinder  radius 5 m and height 10m in the middle Circular cone radius 5 m and height 4 m at the top The top of the tank is 2 m below … 
Calculus 2 / Physics
An underground tank full of water has the following shape 1) hemisphere of radius 5 m at the bottom 2) a cylinder of radius 5 m and height 10 m in the middle 3) a circular cone with base radius 5 and height 4 m at the top The top of … 
Calculus
A cylindrical water tank has a radius of 2 feet and a height of 6.0 feet. Compute the work done to pump the water out of a filled tank through the top. [The density of water is 62.4 lbs/ft3.] 
Calculus
A tank in the shape of a right circular cylinder is filled with water (62.5 lb/ft3). It has a height of 8 ft and a diameter of 10 ft. How much work is required to pump all the water to a spout that is 3 ft above the top of the tank? 
calculus
A tank in the shape of a right circular cylinder is filled with water (62.5 lb/ft3). It has a height of 8 ft and a diameter of 10 ft. How much work is required to pump all the water to a spout that is 3 ft above the top of the tank? 
Calculus
A tank in the shape of a right circular cylinder is filled with water (62.5 lb/ft3). It has a height of 8 ft and a diameter of 10 ft. How much work is required to pump all the water to a spout that is 3 ft above the top of the tank?