# Calculus

posted by .

The hemispherical tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank.
----------
What is shown is just the tank (a hemisphere) with a radius of 5 ft.
----------
First I calculated the Volume of the hemisphere, V = (2/3)*pi*r^3
V = (2/3)*pi*125 = (250/3)*pi
Then I took the integral of: Volume*5y*dy from 0 to 5.
Which equals: ((250/3)*pi)*(5/2)y^2 evaluated at 5 and 0.
I came up with 16362.5 ft*lb.
----------
Am I using the wrong method?

## Similar Questions

1. ### Calculus

The hemispherical tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank. ---------- What is shown is just the tank (a hemisphere) with a radius of 5 ft. ---------- …
2. ### Calculus

The tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank. The tank shown is a hemisphere with r = 5 ft. The water is to be pumped out at the top. First I solved …
3. ### Calculus

The tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank. The tank shown is a hemisphere with r = 5 ft. The water is to be pumped out at the top. First I solved …
4. ### Math - Calculus 2

An underground tank full of water has the following shape: Hemisphere - 5 m radius. at the bottom Cylinder - radius 5 m and height 10m in the middle Circular cone radius 5 m and height 4 m at the top The top of the tank is 2 m below …
5. ### Calculus 2

An underground tank full of water has the following shape: Hemisphere - 5 m radius. at the bottom Cylinder - radius 5 m and height 10m in the middle Circular cone radius 5 m and height 4 m at the top The top of the tank is 2 m below …
6. ### Calculus 2 / Physics

An underground tank full of water has the following shape 1) hemisphere of radius 5 m at the bottom 2) a cylinder of radius 5 m and height 10 m in the middle 3) a circular cone with base radius 5 and height 4 m at the top The top of …
7. ### Calculus

A cylindrical water tank has a radius of 2 feet and a height of 6.0 feet. Compute the work done to pump the water out of a filled tank through the top. [The density of water is 62.4 lbs/ft3.]
8. ### Calculus

A tank in the shape of a right circular cylinder is filled with water (62.5 lb/ft3). It has a height of 8 ft and a diameter of 10 ft. How much work is required to pump all the water to a spout that is 3 ft above the top of the tank?
9. ### calculus

A tank in the shape of a right circular cylinder is filled with water (62.5 lb/ft3). It has a height of 8 ft and a diameter of 10 ft. How much work is required to pump all the water to a spout that is 3 ft above the top of the tank?
10. ### Calculus

A tank in the shape of a right circular cylinder is filled with water (62.5 lb/ft3). It has a height of 8 ft and a diameter of 10 ft. How much work is required to pump all the water to a spout that is 3 ft above the top of the tank?

More Similar Questions