Calc

posted by .

Find the exact total of the areas bounded by the following functions:

f(x) = sinx
g(x) = cosx
x = 0
x = 2pi

I set my calculator to graph on the x-axis as a 2pi scale. The two functions appear to cross three times between x = 0 and 2pi. (including 2pi) Now, from top to bottom, I can't distinguish which equation is which. I know to look from left to right, and it appears that the first intersection has cosine on top, and the second has sin on top, but I'm not sure about the intersection at 2pi. Further, I know this requires the use of values on the unit circle that I'm not entirely sure how to use.

After I've found each top-bottom equation and can add them all together to get the integral from 0-2pi OF (3 different sets of cos and sin subtractions) how do I determine the values? Will it be for quadrant 1, quadrant 4, then quadrant 1 again? (In order of intersection)

Thank you in advance. These problems have a tendency to get very involved and I lose myself in them.

You need to integrate the function

ABS[f(x) - g(x)] from zero to 2 pi.

Here ABS denotes the absolute value.

Note that:

cos(x) - sin(x) = sqrt(2)cos(x + pi/4)

Use the formula:
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

to derive this formula.

So, you have to integrate the function:

sqrt(2) ABS[cos(x + pi/4)]

from zero to 2 pi. Since the integral is over one period you can forget about the pi/4 and just integrate
sqrt(2) ABS[cos(x)] or perhaps slightly easier the function sqrt(2) ABS[sin(x)] from zero to 2 pi.

Integral of sqrt(2) ABS[sin(x)] dx

from zero to 2 pi is th same as twice the integral of sqrt(2) sin(x) from zero to pi.



Thank you so much for your help!

I'm having trouble putting that into a calculator using FnInt.

FnInt: (sqrt2) (ABS (cos(x))), x, 0, 2pi

Returns and error.

Is that the correct function etc? or am I missing something else?

Thanks again,

Sarah

Maybe you get the error because your calculator doesn't know how to integrate the absolute value of cosine.

Because we are integrating over an entire period, you can also integrate the absolute value of the sinus from zero to 2 pi, but that's twice the integral of sin(x) from zero to pi. The integral of sin(x) from zero to pi is 2. The answer is thus 4 sqrt(2).

If you sketch the two curves it is easy to see that they intersect at pi/4 and again at 5pi/4.
(Sarah, they don't intersect at 2pi because
sin(2pi)= 0, cos(2pi)=1 )

total area =
integral(cosx-sinx)dx from 0 to pi/4
+
integral(sinx-cosx)dx from pi/4 to 5pi/4
+ integral(cosx-sinx)dx from 5pi/4 to 2pi.

the integral of cosx-sinx is (sinx+cosx), the angles are all special angles and can be found without any calculators.

Thank you both again! Which values am I supposed to be using? I set up the integrals and FnInted the first one, which gave me a decimal. I figured I should get the same answer if I use the values from the unit circle for pi/4.

I had cos [(sqrt 2)/2]- sin [(sqrt 2)/2] - 1. This gave me a very different answer than the first decimal I got.

Thank you,

Sarah

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. check math

    Here are my answers. Can you check if I got the right answers?
  2. Trigonometry

    4. Find the exact value for sin(x+y) if sinx=-4/5 and cos y = 15/17. Angles x and y are in the fourth quadrant. 5. Find the exact value for cos 165degrees using the half-angle identity. 1. Solve: 2 cos^2x - 3 cosx + 1 = 0 for 0 less …
  3. Advanced Functions

    Determine the solutions for: (cos x)/(1 + sinx) + (1 + sinx)/(cosx) = 2 in the interval x is all real numbers, such that [-2 pi, 2pi]
  4. Math-trigonometry

    Several questions from my homework, any are appreciated. Thanks! Solve: 1) sinx-tanx=0 2) 3csc^2x=4 Find all solutions within (0,2pi) 3) cos4x(cosx-1)=0 4) cos4x-7cos2x=8 Use inverse functions where necessary to find solutions from …
  5. calculus

    given the graph of f(x) = x sinx, 0<=x<=2pi assuming that a quantity y changes at a rate of y' = xsinx, find by how much it will increase or decrease over 3pi/2 <= x <= 2pi the area under the graph from 0 to pi/2 is 1 the …
  6. graphing trig functions

    given y=(3x+2pi) how would i graph one period this without a calculator?
  7. Check a few more CALC questions, please?

    I feel pretty good on my answers. Are there any I got wrong?
  8. math

    Hello there, im doing an equation and its mind boggling me badly so i want to see if im doing something wrong or not. It goes like this: sinx - Squareroot of 3/2 > 0 x € [0,2pi) i start by moving the sqroot of 3.. so i have sinx …
  9. Calculus

    determine the absolute extreme values of the function f(x)=sinx-cosx+6 on the interval 0<=x<=2pi. This is what i did: 1.) i found the derivative of the function which is f'(x)=cosx+sinx 2.) I set f'(x)=0 and got sinx/cosx=-1 …
  10. Math

    This is on the 2008 Free response AP Calc AB exam- #4a. Let f be the function given by f(x)=(lnx)(sinx). The figure above shows the graph of f for 0<=x<=2pi. The function g is defined by int{1,x} f(t)dt for 0<x<=2pi. a) …

More Similar Questions