physics

posted by .

One particle has a mass of 3.00*10-3 kg and a charge of +7.60 µC. A second particle has a mass of 6.00*10-3 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.100 m, the speed of the 3.00*10-3 kg particle is 140 m/s. Find the initial separation between the particles.

You can so,ve this problem by using conservation of energy.

First you find the speed of the aother particle. You use the fact that momentum is conserved. It was zero when the particles were released so it's still zero.

The fact that the total mometum is zero leads to the conclusion that second particle is moving at half the speed of the first particle (and in the opposite direction), because it's mass is twice that of the first particle.

You now know the speeds of both particles and from that you can calculate the kinetic energy. From the distance of the two particles you calculate the potential energy:

q1*q2/(4 pi epsilon_0 r)

The total energy is the sum of the potential and kinetic energy. When the particles were just released they both had a velocity of zero. So at that time the total energy was the potential energy they had. But since energy is conserved that potential energy was equal to the total energy you just computed. This means that the distance r_int is such that:

q1*q2/(4 pi epsilon_0 r_int) = total energy

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics

    One particle has a mass of 3.38 x 10-3 kg and a charge of +7.76 ìC. A second particle has a mass of 8.46 x 10-3 kg and the same charge. The two particles are initially held in place and then released. The partcles fly apart, and when …
  2. physics

    Two particles each have a mass of 6.7 x 10-2 kg. One has a charge of +7.3 x 10-6 C, and the other has a charge of -7.3 x 10-6 C. They are initially held at rest at a distance of 1.1 m apart. Both are then released and accelerate toward …
  3. Physics

    Figure (a) shows charged particles 1 and 2 that are fixed in place on an x axis. Particle 1 has a charge with a magnitude of |q1| = 12.0e. Particle 3 of charge q3 = +13.0e is initially on the x axis near particle 2. Then particle 3 …
  4. College Physics

    Two equally charged particles, held 2.8 x 10-3 m apart, are released from rest. The initial acceleration of the first particle is observed to be 6.8 m/s2 and that of the second to be 6.8 m/s2. If the mass of the first particle is 5.3 …
  5. College Physics

    particle 1 of charge q1 = 1.04 ìC and particle 2 of charge q2 = -2.99 ìC, are held at separation L = 10.8 cm on an x axis. If particle 3 of unknown charge q3 is to be located such that the net electrostatic force on it from particles …
  6. Physics

    Two particles each have a mass of 5.5 10-3 kg. One has a charge of +4.8 10-6 C, and the other has a charge of -4.8 10-6 C. They are initially held at rest at a distance of 0.88 m apart. Both are then released and accelerate toward …
  7. Physics

    Two particles each have a mass of 5.5 10-3 kg. One has a charge of +4.8 10-6 C, and the other has a charge of -4.8 10-6 C. They are initially held at rest at a distance of 0.88 m apart. Both are then released and accelerate toward …
  8. Physics

    Two particles each have a mass of 5.5 10-3 kg. One has a charge of +4.8 10-6 C, and the other has a charge of -4.8 10-6 C. They are initially held at rest at a distance of 0.88 m apart. Both are then released and accelerate toward …
  9. Physics

    Two particles each have a mass of 5.5 10-3 kg. One has a charge of +4.8 10-6 C, and the other has a charge of -4.8 10-6 C. They are initially held at rest at a distance of 0.88 m apart. Both are then released and accelerate toward …
  10. physics

    One particle has a mass of 2.86 x 10-3 kg and a charge of +7.32 μC. A second particle has a mass of 6.41 x 10-3 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, …

More Similar Questions