# physics

posted by .

THree blocks of masses 3m, 2m and m are connected to strings A,B, and C. The blocks are pulled along a rough surface by a force of magnitude F exerted by string C. The coefficient of friction between each block and the surface is the same. Which string must be the strongest in order not to break?
a) A
b) B
c) C
d) they must all be the same strength
e) It is impossible to determine without knowing the coefficient of friction

I think the answer is c) because it's the string that is pulling the largest amount of mass (which is all of the masses attached to this string).

If A pulls only mass 3m and B is between 3m and m, like this:

3m--A--2m--B--m--C-->F

Then string C has tension force F, which equals or exceeds the friction force acting on A, B, and C together, assuming there is motion.
F - u (3m + 2m + m) g = 6 m a
F = 6m (a + ug)

The tension in A is TA, and
TA - u (3m g) = 3m a
TA = 3m (a + ug)

One could write a similar equation for string B

The tension in any string is proportional to the total mass pulled by all weights behind that string. Thus the answer is C.

So you are right again!

## Respond to this Question

 First Name School Subject Your Answer

## Similar Questions

1. ### physics

Three blocks are located on a horizontal table. The coefficient of kinetic friction between the blocks and the table is 0.276. They are connected by a massless cord, as shown in the figure below, and pulled to the right. The masses …
2. ### physics

Three blocks are located on a horizontal table. The coefficient of kinetic friction between the blocks and the table is 0.276. They are connected by a massless cord, as shown in the figure below, and pulled to the right. The masses …
3. ### Physics

Three identical blocks, A, B, and C, are on a horizontal frictionless table. The blocks are connected by strings of negligible mass, with block B between the other two blocks. If block C is pulled horizontally by a force of magnitude …
4. ### physics

Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . (Figure 1) The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that …
5. ### physics

blocks 1 and 2 of masses 2 kg and 4kg, respectively, are connected by a light string, as shown above. These blocks are further connected to a block of mass 3kg by another light string that passes overr a pully of negligible mass and …
6. ### Physics

Two blocks are attached together with a piece of string. Block #1 (3 kg) slides along a rough horizontal surface and block #2 (2 kg) hangs off the end of the surface. If the blocks accelerate at 2.5 m/s2 in the directions shown, determine …
7. ### Physics

Two blocks are attached together with a piece of string. Block #1 (3 kg) slides along a rough horizontal surface and block #2 (2 kg) hangs off the end of the surface. If the blocks accelerate at 2.5 m/s2 in the directions shown, determine …
8. ### Physics

A force of 9.4N pulls horizontally on a 1.2-kg block that slides on a rough, horizontal surface. This block is connected by a horizontal string to a second block of mass m2 = 2.00kg on the same surface. The coefficient of kinetic friction …
9. ### Physics

Two blocks connected by a string are pulled across a rough horizontal surface by a force applied to one of the blocks, as shown. The acceleration of gravity is 9.8 m/s2 . If each block has an acceleration of 5.2 m/s2 to the right, …
10. ### physics

Two blocks of equal masses are connected by a string. Block 1 is pulled by a force of 30 N which accelerates both blocks at 3 m/s2 along a surface of negligible friction A) find the masses of each block B) find the tension

More Similar Questions