Taylor seires

posted by .

f(x) =ln (1-x)

a) Compute f'(x), f''(x), f'''(x). Spot the pattern and give an expression for f ^(n) (x) [the n-th derivative of f(x)]

b) Compute the MacLaurin series of f(x) (i.e. the Taylor series of f(x) around x=0)

c) Compute the radius of convergence and determine the interval of convergence of the series in b).

d) Determine the Taylor series of f'(x) around x=0. Can you do so without using b)?

e) How would you have computed part b) if you had first done part d)?

for part a) i got, please check.

f'(x) = -1/(1-x)
f''(x) = -1/(1-x)^2
f'''(x) = -2/(1-x)^3

f^(n) (x) = -((n-1)!)/(1-x)^n
for n = 1,2,3,...

This is how far i got to, please help

f^(n)(0) = -(n-1)!

so Sum_{n=0 to infinity} x^n/n! f^(n)(0)=
-Sum_{n=1 to infinity} x^n/n

Here we have used that the zero-th derivative (i.e. the function itself) is zero for x=0.

The radius of convergence, R, is given by:

R = 1/L

where L is the limit of the absolute value of a_{n+1}/a_{n} as n--> infinity.

Inour case a_{n} = 1/n and you see that L = 1.

f'(x) = -1/(1-x). You can use that the series expoansion of this function is given by the geometric series:

1/(1-x) = Sum_{n=0 to infinity} x^(n)

If you integrate this term by term you obtain the series expansion of -log(1-x).

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus-- need help desperately!

    The Taylor series about x=5 for a certain function f converges to f(x) for all x in the interval of convergence. The nth derivative of f at x=5 is given by f^(n) (5)= (-1)^n(n!)/((2^n)(n+2)), and f(5)=1/2. Write third degree Taylor …
  2. Calculus

    Please.... I need your help! I posted this question yesterday and no one has answered it yet. Can anyone help me please?
  3. Calculus - Taylor #2

    Find the Taylor series for f(x) centered at the given value of 'a'. (Assume that 'f' has a power series expansion. Do not show that Rn(x)-->0.) f(x) = x3, a = -1 and what i've done so far: f (x) = x^3 f ' (x) = 3x^2 f '' (x) = 6x^1 …
  4. Calculus

    Hi~ Thank you for your help! I was trying to work on a problem about Taylor series, but i don't think im approaching the problem the right way. I have to find the fifth order Taylor polynomial and Taylor series for the function f(x) …
  5. Math

    Thankyou very much! I'm having trouble with this question about taylor series. how would i go about doing the following questoin?
  6. Math

    Hello, I am learning about Taylor series in school, but they are quite confusing.. Can you please explain how I should do this problem?
  7. Calc 2 taylor series

    use the definition of a taylor series to find the Taylor series (centeredat c) for the function. f(x)= 7/x c=1 so what is f(x) as n goes from 0 to infinity?
  8. Calculus Derivative- Taylor Series?

    let f(x)= x/x-1 find f'(x) f ''(x) and a formula for f ^ (n) * x. I found the first and second derivatives but do not know how to make a general equation for this. I have not learnt the Taylor or Maclaurin Series either. Thank you.
  9. Maths

    Use the binomial series to find the Taylor series about 0 for the function f(x) = (1 + x)−3/5, giving all terms up to the one in x4. I have the answer; f(x)=1-3/5(x) +12/25(x^2) -52/125(x^3) + 234/625(x^4) but i am not sure how …
  10. Urgent help Maths Ms sue

    Use binomial series to find the Taylor series about 0 for the function f(x)=(1+x)^-3/5 giving all terms up to the one in x^4. Then use this series and Taylor series for sin x to find the quartic Taylor polynomial about 0 for the function …

More Similar Questions