Math

posted by .

Let A, B, and 0 be 2x2 matrices. Assuming that A is invertible, find a matrix C such that

[A^-1|0 ]
[C |A^-1]

is the inverse of the partitioned matrix

[A|0]
[B|A]

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math (matrices)

    No one answered my matrix question. Let me rephrase: Let A, B, and 0 be 2x2 matrices. Assuming that A is invertible and 0 is all zeroes, what is the inverse of the matrix [A|0] [B|A] (that is a 4x4 matrix represented as 4 2x2 matrices) …
  2. Algebra

    Let A and B be n x n matrices, assume AB is invertible and show that both A and B are invertible. what?
  3. Algebra II (Matrices)

    My book doesn't solve it like a linear equation, they solve it by using inverse matrices. Solve the matrix equation: |4 -5||m|=|32| |1 2| |n|=|-5| A= |4 -5| |1 2| X= |m| |n| B= |32| |-5| Step 1. Find the inverse of the coefficient …
  4. matrices

    Two matrices can be multiplied only if their sizes are compatible. Suppose that U is an m × n matrix, and that V is a p × q matrix. In order for U•V to make sense, what must be true of the dimensions of these matrices?
  5. MATHS----Matrix

    For a given square matrix A the predicted values of matrix B are: predicted B=A(A'A)^(-1)A'B why is the matrix C=A(A'A)^(-1)A' an idempotent and symmetric matrix?
  6. Math

    I have a few questions about T-Matrix. In excel, I am suppose to work with powered matrices to construct a weighted T matrix, using a scalar of .7. Does this mean I multiply each of the powered matrices by .7?
  7. LINEAR ALGEBRA

    How to prove or disprove (a)if A has a zeronentryonthe diagonal then A is not invertible (b)if Ais not invertible then for every matrix B, AB is not invertible (c)if A is a nonzero 2X2 matrix such that A^2+A=0, then A is invertible
  8. Math

    Mark each of the following True or False. ___ a. All vectors in an orthogonal basis have length 1. ___ b. A square matrix is orthogonal if its column vectors are orthogonal. ___ c. If A^T is orthogonal, then A is orthogonal. ___ d. …
  9. linear algebra

    1)If A is an invertible matrix and k is a positive integer, then (A^k)^-1 = (A^-1)^k note: ^ stand for power, -1 stand for inverse of A 2)If A is an invertible matrix, then (transpose of A)^-1 =transpose of(A^-1) 3)Prove A^2 = A, then …
  10. Calc

    A video games shop is analyzing its sales performance using matrices. Matrix A contains the unit sales data for each product category (horizontally) per week (vertically). Matrix B contains the unit sales data for weekends for each …

More Similar Questions