Science
posted by Ren .
A car weights 1.30 X 10^4 N is initially moving at a speed of 40km/h when the brakes are applied and the car is brought to a stop in 15m. Assuming that the force that srops the car is constant. find a)magnitude of the force b)time required for the change in speed.
If the inital speed is doubled and the car experiances the same force during the braking by what factors are c) the stopping distance and d) the stopping time multiplied?
I have a test with this kind of problem on it soon and I still don't understand it. Please help me.
Use the impulse equation:
Force*time= mass*changeinvelocity

ggty
Respond to this Question
Similar Questions

Physics
A car that weighs 14900.0 N is initially moving at a speed of 57.0 km/hr when the brakes are applied and the car is brought to a stop in 4.8 s. Find the magnitude of the force that stops the car, assuming it is constant. I found a … 
Physics
A car initially traveling at 33.4 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does … 
physics
A car initially traveling at 31.0 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does … 
physics
A car that weighs 1.5 × 10^4 N is initially moving at a speed of 43 km/h when the brakes are applied and the car is brought to a stop in 16 m. Assuming that the force that stops the car is constant, find (a) the magnitude of that … 
physics
A car that weighs 15,000 N is initially moving at 60 km/hr when the brakes are applied. The car is brought to a stop in 30 m. Assuming the force applied by the brakes is constant, determine the magnitude of the braking force. 
physics
A car that weighs 15,000 N is initially moving at 60km/hr when the brakes are applied. The car is brought to a stop in 30m. Assuming the force applied by the brakes is constant, determine the magnitude of the braking force. 
Physics
A car that weighs 14600.0 N is initially moving at a speed of 58.0 km/hr when the brakes are applied and the car is brought to a stop in 4.7 s. Find the magnitude of the force that stops the car, assuming it is constant. 
Physics
a car that weights 15000 N is initially moving at 60 km/hour when the brakes are applied. The car is brought to a stop at 30 meters. Determine the magnitude of the braking force 
physics
A car that weifgs 15000 n is initially moving at 60 km/hr when the brakes are applied. The cae is broight to a stop in 30 m. Assuming the force applied by the brakes is constant, determine the magnitude of the braking force. 
Physics
A car moving with a speed of 90km per hrt was brought to rest by the applications of brakes in 10sec how far the car the car travel afterwards the brakes were applied