chem
posted by Mary .
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5.
change the line spectrum to meters
you know the equation is Et= EfEi (i think is the equation they want you to use, i don't know what they want),
well then that would be (Rhc/nf^2)(Rhc/ni^2)
Rhc= 2.179 Z 10^18 J/atom or
1312 kJ/mol
if this isnt the equation you needed sorry
This is a double post.
Respond to this Question
Similar Questions

chem
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5. I am not certain of your difficulty here. Can you amplify? 
Chemistry
I am so stuck on this problem: λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5. I know 1/lambda = RH (1/n2  1/n2) 1/(.4118e6 … 
chemistry
Calulate the wavelengths (in nm) of the visible lines in the line spectrum of hydrogen using the Rydberg equation (nf = 2; ni = 3, 4, 5, and 6). 
Chem.
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6. 
college chemistry
ë for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5 I have tried to figure this out so many times, found the same answer, and it's always … 
chemistry
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6. 
Rydberg equation
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6. 
Chemistry
In the spectrum of a specific element, there is a line with a wavelength of 656 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for … 
Chemistry
In the spectrum of a specific element, there is a line with a wavelength of 656 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for … 
Chemistry 1
In the spectrum of a specific element, there is a line with a wavelength of 486 nm. Use the Rydberg equation to calculate the value of n for the higher energy Bohr orbit involved in the emission of this light. Assume the value for …