Prove the identity

Cos⁴x + sin²x = sin⁴x + cos²x

We can start by manipulating the left side of the equation:

cos⁴x + sin²x = (cos²x)² + sin²x
= (cos²x)² + (1 - cos²x)
= (cos²x)² + 1 - cos²x
= (cos²x)² - cos²x + 1.

Now let's manipulate the right side of the equation:

sin⁴x + cos²x = (1 - cos²x)² + cos²x
= (1 - 2cos²x + (cos²x)²) + cos²x
= 1 - 2cos²x + (cos²x)² + cos²x
= (cos²x)² - 2cos²x + 1 + cos²x
= (cos²x)² - cos²x + 1.

Therefore, we have shown that the left side of the equation is equal to the right side of the equation, proving the identity:

cos⁴x + sin²x = sin⁴x + cos²x.

To prove the identity Cos⁴x + sin²x = sin⁴x + cos²x, we can simplify both sides of the equation individually using trigonometric identities.

Starting with the left side, we can use the Pythagorean identity sin²x + cos²x = 1 to rewrite sin²x as 1 - cos²x:

Cos⁴x + sin²x = Cos⁴x + (1 - cos²x)

Expanding the first term, Cos⁴x, using the identity (Cos²x)² = Cos⁴x, we have:

(Cos²x)² + (1 - cos²x)

Next, we can combine like terms:

Cos⁴x + 1 - cos²x = Cos⁴x - cos²x + 1

Now, let's simplify the right side of the equation:

sin⁴x + cos²x

Using the Pythagorean identity sin²x + cos²x = 1 again, we can express sin⁴x as (sin²x)² and substitute:

(sin²x)² + cos²x

Since (sin²x)² is equivalent to (1 - cos²x)² by substituting 1 - cos²x for sin²x, we can simplify further:

(1 - cos²x)² + cos²x

Expanding the squared term, (1 - cos²x)², we have:

(1 - 2cos²x + cos⁴x) + cos²x

Combining like terms, we get:

1 - 2cos²x + cos⁴x + cos²x = cos⁴x - cos²x + 1

Now, both sides of the equation have been simplified to the same expression:

Cos⁴x - cos²x + 1 = cos⁴x - cos²x + 1

Thus, we have shown that Cos⁴x + sin²x = sin⁴x + cos²x is indeed an identity.