∫ln(9)0∫ln(5)0e10y−3xdydx=

To evaluate the given integral, we can first integrate with respect to y and then with respect to x.

∫ln(9)0∫ln(5)0e^(10y−3x)dydx

Let's start with the inner integral with respect to y.

∫ln(9)0 e^(10y−3x)dy

To integrate e^(10y-3x) with respect to y, we treat x as a constant.

∫ln(9)0 e^(10y) e^(-3x) dy

Using the property that ∫e^(ax) dx = (1/a)e^(ax), we can integrate e^(10y) with respect to y.

(1/10)e^(10y) e^(-3x) from y=0 to y=ln(9)

= (1/10)(e^(10ln(9)-3x) - e^(0-3x))

= (1/10)(e^(ln(9^10)-3x) - e^(-3x))

= (1/10)(e^(ln(9^10/1) -3x) - e^(-3x))

= (1/10)(e^(ln(9^10))e^(-3x) - e^(-3x))

= (1/10)((9^10)e^(-3x) - e^(-3x))

= (1/10)(9^10 - 1)e^(-3x)

Now, we can integrate the resulting expression with respect to x.

∫ln(5)0 (1/10)(9^10 - 1)e^(-3x) dx

Using the property that ∫e^(ax) dx = (1/a)e^(ax), we integrate e^(-3x) with respect to x.

(1/10)(9^10 - 1)(1/-3)e^(-3x) from x=0 to x=ln(5)

= (1/10)(9^10 - 1)(1/-3)(e^(-3ln(5)) - e^(-3(0)))

= (1/10)(9^10 - 1)(1/-3)((1/5^3) - 1)

= (1/10)(9^10 - 1)(-1/3)((1/125) - 1)

Simplifying further, we get:

= -(1/300)(9^10 - 1)(1 - 125)

= -(1/300)(9^10 - 1)(-124)

= (124/300)(9^10 - 1)

Therefore, ∫ln(9)0∫ln(5)0e^(10y−3x)dydx = (124/300)(9^10 - 1).

To evaluate the double integral ∫∫e^(10y - 3x) dydx over the region specified, we need to follow these steps:

Step 1: Integrate with respect to y:
∫(ln(9) 0) e^(10y - 3x) dy

To integrate e^(10y - 3x) with respect to y, we treat x as a constant:
= (1/10) e^(10y - 3x) + C1

Step 2: Evaluate the above expression at the limits of integration:
= (1/10) e^(10(ln(9)) - 3x) + C1
- (1/10) e^(-3x) + C1

Step 3: Integrate with respect to x:
∫(ln(5) 0) [(1/10) e^(10(ln(9)) - 3x) + C1] dx

To integrate [(1/10) e^(10(ln(9)) - 3x) + C1] with respect to x, we treat C1 as a constant:
= [(1/10)(e^(10(ln(9)) - 3x) / -3) + C1x] + C2

Step 4: Evaluate the above expression at the limits of integration:
= [(1/10)(e^(10(ln(9)) - 3(0)) / -3) + C1(0)] - [(1/10)(e^(10(ln(9)) - 3(ln(5)))) / -3) + C1(ln(5))] + C2

Simplifying further:
= [(1/10)(e^(10ln(9)) / -3) + 0] - [(1/10)(e^(10ln(9)) * e^(-3ln(5)))) / -3) + 0] + C2
= [(1/10)(9^10) / -3] - [(1/10)(9^10 * 5^(-3))] + C2

Finally, the result of the double integral is:
[(9^10) / (-30)] - [(9^10) / (50)] + C2