17. The expression

2
tan
πœ—
1βˆ’
tan2
πœ—
is identically equal to
A. cos 2πœƒ
B. sin 2πœƒ
C. tan 2πœƒ
D. cot 2οΏ½

We can start by simplifying the expression using the trigonometric identity:

tan 2πœƒ = 2 tan πœƒ / (1 - tan^2 πœƒ)

Letting x = tan πœƒ, we can rewrite the expression as:

2x / (1 - x^2)

To get a common denominator, we can rewrite 1 as (1 - x^2 + x^2):

2x / ((1 - x^2) + x^2)

Simplifying, we get:

2x / (cos^2 πœƒ)

Using the identity cos^2 πœƒ = 1 / (1 + tan^2 πœƒ), we can rewrite this as:

2x(1 + x^2)

Expanding and simplifying, we get:

2x + 2x^3

Substituting back in tan πœƒ for x, we get:

2 tan πœƒ + 2 tan^3 πœƒ

This is equivalent to:

2 tan πœƒ (1 + tan^2 πœƒ)

Using the identity 1 + tan^2 πœƒ = sec^2 πœƒ, we can rewrite this as:

2 tan πœƒ sec^2 πœƒ

Finally, using the identity sec^2 πœƒ = 1 + tan^2 πœƒ, we get:

2 tan πœƒ (1 + tan^2 πœƒ) / (1 + tan^2 πœƒ)

Simplifying, we get:

2 tan πœƒ

Therefore, the expression is identically equal to B. sin 2πœƒ.

To simplify the expression, we will use the trigonometric identity:

tan^2(πœƒ) + 1 = sec^2(πœƒ)

Let's rewrite the expression:

2tan(πœƒ) / (1 - tan^2(πœƒ))

Since we have a tan^2(πœƒ) in the denominator, we can rewrite it as sec^2(πœƒ):

2tan(πœƒ) / (1 - sec^2(πœƒ))

Now, we can use the identity:

1 - sec^2(πœƒ) = -cos^2(πœƒ)

Substituting this identity into the expression:

2tan(πœƒ) / (-cos^2(πœƒ))

Next, since tan(πœƒ) = sin(πœƒ) / cos(πœƒ), we can rewrite the expression as:

2(sin(πœƒ) / cos(πœƒ)) / (-cos^2(πœƒ))

Simplifying further:

-2sin(πœƒ) / cos(πœƒ) * 1 / cos(πœƒ)

-2sin(πœƒ) / cos^2(πœƒ)

Finally, since sin(πœƒ) / cos(πœƒ) is equal to tan(πœƒ), we have:

-2tan(πœƒ)

Therefore, the expression is equal to -2tan(πœƒ).

So, the answer is not provided in the given options.