Prove the trigonometric identity below. Show all steps algebraically

(š‘„sinĪøāˆ’š‘¦cosĪø)2 +(š‘„cosĪø+š‘¦sinĪø)2 =š‘„2 +š‘¦2

Not the same question, so here it goes

prove: (š‘„sinĪøāˆ’š‘¦cosĪø)^2 +(š‘„cosĪø+š‘¦sinĪø)^2 =š‘„^2 +š‘¦^2

Let x = sinA and let y = cosA

Left Side = (š‘„sinĪøāˆ’š‘¦cosĪø)^2 +(š‘„cosĪø+š‘¦sinĪø)^2
= (sinAsinĪø - cosAcosĪø) + (sinAcosĪø + cosAsinĪø)^2
= ( cos(A+Īø))^2 + (sin(A+Īø))^2
= 1

RS = (sinA)^2 + (cosA)^2
= 1
= LS

the 2's are exponents

Someone else posted that earlier:

www.jiskha.com/questions/1866365/solve-the-following-equation-and-state-the-general-solution-for-all-values-of-x-in-exact

clever solution, but if |x| or |y| >1 then they cannot be sin and cos of A. In that case, some more algebra will be needed, but it still works out to x^2 + y^2.

To prove the given trigonometric identity algebraically, we can expand both sides of the equation and simplify to demonstrate they are equal. Let's start with the left side:

(š‘„sinĪø - š‘¦cosĪø)^2 + (š‘„cosĪø + š‘¦sinĪø)^2

Expanding the first term using the binomial formula:

= (š‘„^2 sin^2Īø - 2š‘„š‘¦sinĪøcosĪø + š‘¦^2 cos^2Īø) + (š‘„^2 cos^2Īø + 2š‘„š‘¦sinĪøcosĪø + š‘¦^2 sin^2Īø)

Now, combining like terms, we get:

= š‘„^2 sin^2Īø + š‘¦^2 cos^2Īø + š‘„^2 cos^2Īø + š‘¦^2 sin^2Īø - 2š‘„š‘¦sinĪøcosĪø + 2š‘„š‘¦sinĪøcosĪø

Notice that the middle terms cancel each other out (š‘„^2 cos^2Īø - 2š‘„š‘¦sinĪøcosĪø + š‘¦^2 sin^2Īø + 2š‘„š‘¦sinĪøcosĪø), leaving:

= š‘„^2 sin^2Īø + š‘¦^2 cos^2Īø + š‘„^2 cos^2Īø + š‘¦^2 sin^2Īø

Now, combining like terms once more:

= š‘„^2 (sin^2Īø + cos^2Īø) + š‘¦^2 (cos^2Īø + sin^2Īø)

Using the fundamental trigonometric identity sin^2Īø + cos^2Īø = 1, we can simplify the equation further:

= š‘„^2 (1) + š‘¦^2 (1)

= š‘„^2 + š‘¦^2

Hence, we have proven that (š‘„sinĪø - š‘¦cosĪø)^2 + (š‘„cosĪø + š‘¦sinĪø)^2 equals š‘„^2 + š‘¦^2 using algebraic steps.