Trigonometry
posted by Anonymous on .
Prove that sin^2(Omega)  Cos^2(Omega) / tan(Omega) sin(Omega) + cos(Omega) tan(Omega) = cos(Omega)  cot (Omega) cos (omega)

I substituted any angle in the equation the way you typed it, and the equation was false.
I then tried it as
(sin^2 Ø  cos^2 Ø)/(tanØsinØ + cosØtanØ)
using Ø instead of omega for easier typing.
and got
LS = (sinØ+cosØ)(sinØcosØ)/(tanØ(sinØ+cosØ)
= (sinØ  cosØ)/(sinØ/cosØ)
= cosØ(sinØ  cosØ)/sinØ
= cosØsinØ/sinØ  cos^2 Ø/sinØ
= cosØ  (cosØ/sinØ)cos‚
= cosØ  cotØcosØ
= RS 
What does LS and RS stand for?