1. Differential Equations

    Consider the spring - mass system, shown in Figure 4.2.4. consisting of two unit masses suspended from springs with spring constants 3 and 2, respectively. Assume that there is no damping in the system. Show that the displacements u1, and u2 of the masses

    asked by Daoine on May 13, 2014
  2. Physics

    Two massless springs (S1 and S2) are arranged such that one hangs vertically downward and the other is vertically upward, as shown in figure (a). When a 0.275-kg mass is suspended from S1, it stretches by an amount Δx1 = 0.062 m, as shown in figure (b).

    asked by Anonymous on October 23, 2014
  3. physics

    Two masses are suspended from a pulley as shown in the figure below (the Atwood machine). The pulley itself has a mass of 0.20 kg, a radius of 0.15 m, and a constant torque of 0.35 m·N due to the friction between the rotating pulley and its axle. What is

    asked by lissa on January 9, 2011
  4. physics

    Two masses are suspended from a pulley as shown in the figure below (the Atwood machine). The pulley itself has a mass of 0.20 kg, a radius of 0.15 m, and a constant torque of 0.35 m·N due to the friction between the rotating pulley and its axle. What is

    asked by melissa on January 9, 2011
  5. physics

    Two masses are suspended from a pulley as shown in the figure below (the Atwood machine). The pulley itself has a mass of 0.20 kg, a radius of 0.15 m, and a constant torque of 0.35 m·N due to the friction between the rotating pulley and its axle. What is

    asked by i need help please! on January 9, 2011
  6. Physics

    Two masses are suspended from a pulley as shown in the figure . The pulley itself has a mass of 0.30 kg, a radius of 0.20 m, and a constant torque of 0.30 m \cdot N due to the friction between the rotating pulley and its axle. What is the magnitude of the

    asked by Stacy on November 28, 2010
  7. Physics

    Two masses are suspended from a pulley as shown in the figure . The pulley itself has a mass of 0.30 kg, a radius of 0.20 m, and a constant torque of 0.30 m \cdot N due to the friction between the rotating pulley and its axle. What is the magnitude of the

    asked by Garry on November 28, 2010
  8. Physics

    A body of mass m is suspended from a spring with spring constant k and the spring is stretched 0.1. If two identical bodies of mass m/2 are suspended from a spring with the same spring constant k, how much will the spring stretch? Explain your answer. The

    asked by Justin on March 12, 2015
  9. Physics

    three masses are suspended from a meter stick as shown. How much mass must be suspended on the right side for the system to be in equilibrium?

    asked by Faith on July 4, 2011
  10. physics

    A block of mass m1 = 2.4 kg initially moving to the right with a speed of 3.3 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.1 kg initially moving to the left with a speed of 1.5 m/s as shown in

    asked by Leticia on October 14, 2013
  11. physics

    Two objects of masses m1 = 0.58 kg and m2 = 0.92 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k = 300 N/m is placed between them as in figure (a) shown below. Neglect the mass of the spring. The spring is not

    asked by sherry on March 8, 2016
  12. physics

    One end of a massless coil spring is suspended from a rigid ceiling. It is found that when a 4 kg mass is suspended from it the spring stretches 90 mm when the mass comes to rest. (a) What is the spring constant for the spring B)If the mass is then pulled

    asked by Andrea on October 31, 2011
  13. physics

    Consider two masses m1 and m2, connected by a spring of spring constant k and an uncompressed length L. The masses are on a frictionless surface. Initially, m2 compresses the spring to L/2 length. At t=0 the system is released. Find the position of the

    asked by Andres on October 28, 2014
  14. physics

    One end of a massless coil spring is suspended from a rigid ceiling. It is found that when a 3.3 kg mass is suspended from it the spring stretches 105 mm when the mass comes to rest. (a) What is the spring constant for the spring? (b) If the mass is then

    asked by Austin on November 1, 2011
  15. physics

    If a 0.1 kg mass is suspended at rest from a spring near the Earth's surface, the distance that the spring is stretched is measured to be 1.0 cm. What is the spring constant of the spring (remember the MKS units)? A mass of 2 kg is attached to a spring

    asked by devin on November 8, 2010
  16. PHYSICS

    a 0.1 kg mass is suspended at rest from a spring near the Earth's surface, the distance that the spring is stretched is measured to be 1.0 cm. What is the spring constant of the spring (remember the MKS units)? A mass of 2 kg is attached to a spring with

    asked by PHYSICIS HELP ASAP on November 10, 2010
  17. physics

    a 0.1 kg mass is suspended at rest from a spring near the Earth's surface, the distance that the spring is stretched is measured to be 1.0 cm. What is the spring constant of the spring (remember the MKS units)? A mass of 2 kg is attached to a spring with

    asked by derek on November 10, 2010
  18. physics

    Two blocks of masses M and 3M are placed on a horizontal, frictionless surface. A light spring is attached to one of them, and the blocks are pushed together with the spring between them as shown in the figure below. A cord initially holding the blocks

    asked by Jackie on January 23, 2011
  19. physics

    Two blocks of masses M and 3M are placed on a horizontal, frictionless surface. A light spring is attached to one of them, and the blocks are pushed together with the spring between them as shown in the figure below. A cord initially holding the blocks

    asked by Jackie on January 23, 2011
  20. Physics

    Block A of mass 4.0 kg is on a horizontal, frictionless tabletop and is placed against a spring of negligible mass and spring constant 650 N m. The other end of the spring is attached to a wall. The block is pushed toward the wall until the spring has been

    asked by Joe on September 19, 2010
  21. university physics

    A mass m1 = 7.65 kg, is at rest on a frictionless horizontal surface and connected to a wall by a spring with k = 67.9 N/m, as shown in the figure. A second mass, m2 = 5.29 kg, is moving to the right at v0 = 15.3 m/s. The two masses collide and stick

    asked by bülent on November 20, 2012
  22. Physics

    A block of mass m1 = 22.0 kg is connected to a block of mass m2 = 40.0 kg by a massless string that passes over a light, frictionless pulley. The 40.0-kg block is connected to a spring that has negligible mass and a force constant of k = 260 N/m as shown

    asked by Anonymous on March 12, 2013
  23. Differential Equations

    Consider the system shown below of two masses of mass m, coupled together between two fixed walls via springs with varying spring constants. Let x(t) and y(t) be the horizontal displacements of the two masses as a function of time. (a)Write down a system

    asked by Smith on October 13, 2014
  24. physics

    A light spring with a spring constant of 15.2 N/m rests vertically on the bottom of a large beaker of water, as shown in (a) below. A 5.26 10-3 kg block of wood with a density of 636.0 kg/m3 is connected to the spring, and the mass-spring system is allowed

    asked by John Miller on May 5, 2013
  25. Physics

    A mass and spring are arranged on a horizontal, frictionless table as shown in the figure below. The spring constant is k = 480 N/m, and the mass is 4.8 kg. The block is pushed against the spring so that the spring is compressed an amount 0.31 m, and then

    asked by Tarra on February 23, 2012
  26. Physics

    VERTICAL SPRING A spring of negligible mass, spring constant k = 89 N/m, and natural length l = 1.4 m is hanging vertically. This is shown in the left figure below where the spring is neither stretched nor compressed. In the central figure, a block of mass

    asked by Megan on October 16, 2013
  27. physics

    Two identical springs (neglect their masses) are used to “play catch” with a small block of mass 200 g (see the figure). Spring A is attached to the floor and compressed 10.0 cm with the mass on the end of it (loosely). Spring A is released from rest

    asked by Luis on July 3, 2011
  28. Physics (please help!!!!)

    The mass m = 14 kg shown in the figure is displaced a distance x to the right from its equilibrium position. (Take k1 = 113 N/m and k2 = 198 N/m.) (a) What is the net force acting on the mass? (Use any variable or symbol stated above along with the

    asked by HELP! on April 24, 2011
  29. physics

    Two identical springs (neglect their masses) are used to “play catch” with a small block of mass 200 g (see the figure). Spring A is attached to the floor and compressed 10.0 cm with the mass on the end of it (loosely). Spring A is released from rest

    asked by Luis on July 3, 2011
  30. Physics

    A block of mass m1 = 2.4 kg initially moving to the right with a speed of 3.3 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.1 kg initially moving to the left with a speed of 1.5 m/s as shown in

    asked by Leticia on October 14, 2013
  31. Physics

    A block of mass m1 = 2.4 kg initially moving to the right with a speed of 3.3 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.1 kg initially moving to the left with a speed of 1.5 m/s as shown in

    asked by Leticia on October 14, 2013
  32. physics

    A block of mass M1 = 15 kg is lying on a horizontal friction-less surface is connected to a string passing over a friction-less pulley. A mass of M2 = 25 kg is hanging at its other end as shown in the figure below. (i) Find the acceleration in the masses.

    asked by trei-sha on April 13, 2015
  33. College physics-oscillations

    A ball is attached by two spring as shown [vvvOvvv]. If the mass is displaced a distance â–³x BELOW the equilibrium position h (see figure A). Determine whether vertical SHM is possible for the system shown.If so, find the natural frequency. [Assume

    asked by Marco on December 4, 2010
  34. College physics-oscillations

    A ball is attached by two spring as shown [vvvOvvv]. If the mass is displaced a distance â–³x BELOW the equilibrium position h (see figure A). Determine whether vertical SHM is possible for the system shown.If so, find the natural frequency. [Assume

    asked by Marco on December 4, 2010
  35. Physics-I would like to ask once more!

    A ball is attached by two spring as shown [vvvOvvv]. If the mass is displaced a distance â–³x BELOW the equilibrium position h (see figure A). Determine whether vertical SHM is possible for the system shown.If so, find the natural frequency. (Figure

    asked by Marco Tsang on December 4, 2010
  36. PHysics

    A thin, light wire is wrapped around the rim of a wheel, as shown in the following figure. The wheel rotates without friction about a stationary horizontal axis that passes through the center of the wheel. The wheel is a uniform disk with radius 0.400 m.

    asked by omg on November 3, 2011
  37. Physics

    Three equal masses are suspended from a frictionless, massless pulley system, as shown. Once the system has reached equilibrium, 1) what angles will the strings make with respect to the horizontal

    asked by Anonymous on October 7, 2016
  38. physics

    Problem 2: A body A of mass m = 1Kg and a body B of mass M = 4Kg are interconnected by a spring as shown in figure below. The body A performs free vertical harmonic oscillation with amplitude a = 1.6 cm and frequency ω= 25/s. Neglecting the mass of

    asked by nino on October 22, 2011
  39. Physics

    A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 260 N/m, as shown in the figure below. The spring is

    asked by JJ on February 27, 2016
  40. physics

    A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 300 N/m, as shown in the figure below. The spring is

    asked by carlton on November 14, 2011
  41. ph

    A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 300 N/m, as shown in the figure below. The spring is

    asked by carlton on November 14, 2011
  42. college physics HELP

    A vertically oriented spring stretches 0.2m when a 0.4kg mass is suspended from it. The mass is pulled, stretching the spring by an additional 0.15m. The mass is released and beings to oscillate in SHM. a)Calculate the spring constant for the spring.

    asked by siobhan on April 25, 2017
  43. Math

    The equation of the motion of a body suspended by a spring is T=2π√m/k, where T is the time period, m is the mass of the body, and k is the force constant of spring. use this information to find the time period if a body of mass 10 kg is suspended by a

    asked by Jourrapide on September 18, 2016
  44. Physics

    A 4.1 kg block is attached to a spring with a force constant of 550 N/m , as shown in the figure. Find the work done by the spring on the block as the block moves from A to B along paths 1 and 2. W=? How do your results depend on the mass of the block?

    asked by Jenna on October 12, 2009
  45. College Physics (repost)

    A 4.1 kg block is attached to a spring with a force constant of 550 N/m , as shown in the figure. Find the work done by the spring on the block as the block moves from A to B along paths 1 and 2. W=? How do your results depend on the mass of the block?

    asked by Jenna on October 12, 2009
  46. Physics

    A mobile consists of two very lightweight rods of length l = 0.400 m connected to each other and the ceiling by vertical strings. (Neglect the masses of the rods and strings.) Three objects are suspended by strings from the rods. The masses of objects 1

    asked by Luca on June 22, 2012
  47. i need help i couldnt figure this out...

    A block of mass m = 3 kg is attached to a spring (k = 35 N/m) by a rope that hangs over a pulley of mass M = 6 kg and radius R = 6 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

    asked by samJoint on April 2, 2011
  48. Physics

    A block of mass m = 3.65 kg is attached to a spring (k = 27.5 N/m) by a rope that hangs over a pulley of mass M = 7.30 kg and radius R = 2.81 cm, as shown in the figure. a) Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of

    asked by Kyle on October 31, 2014
  49. physics

    A block of mass m = 2.67 kg is attached to a spring (k = 32.3 N/m) by a rope that hangs over a pulley of mass M = 5.34 kg and radius R = 6.41 cm, as shown in the figure. a) Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of

    asked by toot on March 30, 2011
  50. Physics

    In the configuration shown (10m incline for m1 and 8m vertical length for m2 with a spring under it, both masses are linked by a rope and a pulley at the top), the 52.0 N/m spring is unstretched, and the system is released from rest. The mass of the block

    asked by Alphonse on October 25, 2012
  51. Physics

    In the configuration shown (10m incline for m1 and 8m vertical length for m2 with a spring under it, both masses are linked by a rope and a pulley at the top), the 52.0 N/m spring is unstretched, and the system is released from rest. The mass of the block

    asked by Alphonse on October 25, 2012
  52. physics

    A block of mass m = 5 kg is attached to a spring (k = 35 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 4 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

    asked by Anonymous on April 3, 2011
  53. physics/ torques

    A block of mass m = 5 kg is attached to a spring (k = 35 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 4 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

    asked by HELP!!!! on April 3, 2011
  54. physics

    A block of mass m = 5 kg is attached to a spring (k = 28 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 3 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

    asked by Anonymous on March 25, 2011
  55. physics

    is2A wedge of mass M fitted with a spring of stiftness k is kept on a smoth hrizontal surface. A rod of mass m is kept on the wedge as shown in the figure. System is in equilibrium. Assuming that all the surfaces are smooth, the potential energy stored in

    asked by anil jha on December 15, 2012
  56. phicis

    A string of mass 10.0 grams and length L = 3m has its ends tied to two walls separated by distance D = 2m. Two masses of 2 kg each are suspended from the string as shown in the figure. If a pulse is sent from Point A, how long does it take to travel to

    asked by tt on December 6, 2015
  57. Physics - please help me..

    A 1.35 kg mass is suspended from a spring with a spring constant of 189.0 N/m. The spring is attached to a rod which oscillates vertically at a frequency f. For what value of the frequency f will the system resonate?

    asked by Nina on February 12, 2014
  58. Physics

    A block of mass m = 3 kg is attached to a spring (k = 28 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 6 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

    asked by Angelina on March 27, 2012
  59. physics

    The system shown in the Figure is in equilibrium. The mass of block 1 is 2.2 kg and the mass of block 2 is 3.5 kg. String 1 makes an angle = 28o with the vertical and string 2 is exactly horizontal. what is the angle between the string that connects the

    asked by lizzy on April 10, 2008
  60. physics

    A block of mass m = 3 kg is attached to a spring (k = 28 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 6 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

    asked by Angelina on March 28, 2012
  61. science

    A horizontal spring-mass system has low friction, spring stiffness 210 N/m, and mass 0.6 kg. The system is released with an initial compression of the spring of 11 cm and an initial speed of the mass of 3 m/s. suppose that there is energy dissipation of

    asked by hannah on July 16, 2014
  62. mechanics and heat

    Four point masses are located at the four corners of a rectangle as shown in the figure. Calculate the total moment of inertia of this system measured from (a) axis 1 (b) axis 2 (c) axis 3, and (d) an axis that passes through A and perpendicular to the

    asked by awash on January 7, 2015
  63. Physics

    I was given this problem, and are having problems. I am taking AP Physics and I want to be able to understand the concept. Thank you for your help. A block of mass m = 3.65 kg is attached to a spring (k = 27.5 N/m) by a rope that hangs over a pulley of

    asked by Rodrigo on October 31, 2014
  64. physics

    A 1-kg mass (the blue mass) is connected to a 9-kg mass (the green mass) by a massless rod 67 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate about this pivot

    asked by hania on March 25, 2012
  65. physics

    A 1-kg mass (the blue mass) is connected to a 8-kg mass (the green mass) by a massless rod 67 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate about this pivot

    asked by hania on March 25, 2012
  66. physics

    A 1-kg mass (the blue mass) is connected to a 9-kg mass (the green mass) by a massless rod 67 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate about this pivot

    asked by please on March 24, 2012
  67. physics

    A 1-kg mass (the blue mass) is connected to a 9-kg mass (the green mass) by a massless rod 67 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate about this pivot

    asked by Anonymous on March 26, 2012
  68. physics

    A 1-kg mass (the blue mass) is connected to a 9-kg mass (the green mass) by a massless rod 70 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate about this pivot

    asked by deb on March 24, 2012
  69. Physics

    A ball of mass m is attached to a spring with a spring constant k. The system is attached to a thin vertical axis as shown in Figure 4. In its equilibrium vertical position the spring length is L. The axis starts to rotate with a constant angular frequency

    asked by James on December 9, 2014
  70. physics

    A spring with a spring constant of 53.0 N/m is attached to different masses, and the system is set in motion. What is its period for a mass of 2.7 kg?

    asked by Anonymous on September 23, 2014
  71. Physics

    A spring with a spring constant of 40.1 N/m is attached to different masses, and the system is set in motion. What is its period for a mass of 2.8 kg?

    asked by Chris on February 11, 2015
  72. Physics

    A spring oriented vertically is attached to a hard horizontal surface as in the figure below. The spring has a force constant of 1.64 kN/m. How much is the spring compressed when a object of mass m = 2.35 kg is placed on top of the spring and the system is

    asked by Abdul on April 26, 2013
  73. Physics

    Two masses, m1=3kg and m2=2kg, are suspended with a massless rope over a pulley of mass M = 10kg. The pulley turns without friction and may be modeled as a uniform disk of radius R=.1m. You may neglect the size of the masses. The rope does not slip on the

    asked by Jake on April 18, 2012
  74. Physics

    You attach one end of a spring with a force constant k = 893 N/m to a wall and the other end to a mass m = 2.02 kg and set the mass-spring system into oscillation on a horizontal frictionless surface as shown in the figure. To put the system into

    asked by Kristin on April 22, 2015
  75. Physics Urgent please help

    A spring of negligible mass, spring constant k = 82 N/m, and natural length l = 1.2 m is hanging vertically. This is shown in the left side where the spring is neither stretched nor compressed. In the central one, a block of mass M = 5 kg is attached to

    asked by ss01 on October 15, 2013
  76. Physics

    A spring with a spring constant of 35.0 N/m is attached to different masses, and the system is set in motion. What is the period for a mass of 34 g? Answer in units of s

    asked by alice on April 2, 2013
  77. Physics

    A spring with a spring constant of 35.0 N/m is attached to different masses, and the system is set in motion. What is its period for a mass of 2.4 kg? Answer in units of s

    asked by alice on April 1, 2013
  78. physics

    A 0.46 kg object connected to a light spring with a spring constant of 18.0 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the mass. unit = cm/s (b) Determine

    asked by :) on March 22, 2011
  79. physics

    A certain spring elongates 9 mm when it is suspended vertically and a block of mass M is hung on it. The natural frequency of this mass-spring system is: a)0.014 b)5.3Hz c)31.8Hz d)181.7Hz e)need to know M please explain the answer....and hope to answer

    asked by heba on June 18, 2010
  80. Physics

    In a binary star system, two stars orbit about their common center of mass, as shown in the figure . If r2 = 2r1, what is the ratio of the masses m2/m1 of the two stars?

    asked by Real on July 30, 2011
  81. physics

    The launching mechanism of a toy gun consists of a spring of unknown spring constant, as shown in the figure below. If the spring is compressed a distance of 0.160 m and the gun fired vertically as shown, the gun can launch a 21.0-g projectile from rest to

    asked by Anonymous on March 21, 2013
  82. Physics

    A beaker of mass 5kg containing oil of mass 17.4 kg and density 8.5 x102kg/m3 rests on the scale A block of iron of mass 6.7kg is suspended from the spring scale and completely submerged in the oil as shown in Figure below. Determine the equilibrium

    asked by G on November 3, 2014
  83. Physics Help please

    The free-fall acceleration on Mars is 3.7 m/s2. (a) What length pendulum has a period of 4 s on the earth? cm What length pendulum would have a 4 s period on Mars? cm (b) A mass is suspended from a spring with force constant 10 N/m. Find the mass suspended

    asked by Anonymous on December 6, 2010
  84. physics

    In Figure (a), a block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched (x =

    asked by Jin on October 24, 2009
  85. Physics

    A light, ideal spring with a spring constant k = 100 N/m and uncompressed length L = 0.30 m is mounted to the fixed end of a frictionless plane inclined at an angle θ = 30.0° as shown above. Then a mass M 0.300 kg is affixed to the end of the spring and

    asked by Jonah on October 22, 2017
  86. Physics

    Consider the figure above consisting of three particles of mass m attached to a massless rod. Given an axis of rotation through point P, the rod rotates as shown in the figure. If the rod is released from rest in the horizontal position at t = 0. What is

    asked by BBell on July 18, 2018
  87. physics

    A light spring with a spring constant of 105.0 N/m rests vertically on the table, as shown in (a) below. A 2.05 g balloon is filled with helium (0°C and 1 atm pressure) to a volume of 4.64 m3 and connected to the spring, causing the spring to stretch, as

    asked by John Miller on March 14, 2013
  88. Physics help please!!

    As shown in the figure below, two masses m1 = 4.40 kg and m2 which has a mass 80.0% that of m1, are attached to a cord of negligible mass which passes over a frictionless pulley also of negligible mass. If m1 and m2 start from rest, after they have each

    asked by Young on October 29, 2017
  89. Physics

    As shown in the figure below, two masses m1 = 4.40 kg and m2 which has a mass 80.0% that of m1, are attached to a cord of negligible mass which passes over a frictionless pulley also of negligible mass. If m1 and m2 start from rest, after they have each

    asked by Young on October 26, 2017
  90. physics

    Note: The direction of the acceleration ~a of the system is given in the figure. Three masses (17 kg, 21 kg and 67 kg) are connected by strings. The 67 kg mass slides on a horizontal surface of a table top and the 17 kg and 21 kg masses hang over the edge

    asked by I dont like physics on November 24, 2015
  91. Physic (store energy)

    Question three Two masses of 2 kg and 4 kg are held with a compressed spring between them. If the masses are released, the spring will push them away from each other. If the smaller mass moves off with a velocity of 6m/s, what is the stored energy in the

    asked by Jay Peels on May 3, 2018
  92. Physics

    A ball is attached by two springs as shown in the left figure( |wwOww| ).If the mass is displaced a distance ⊿x below the equilibrium position h. Determine whether vertical SHM is possible for the system shown. If so, find the natural frequency.

    asked by Marco Tsang on December 4, 2010
  93. Physics

    An experiment is carried out to measure the spring constant of a spring. A mass of 500 g is suspended on the spring. It is pulled down a small distance and the time for 20 oscillations is measured to be 34 s. a) explain why the mass performs simple

    asked by Nazrawi on October 7, 2018
  94. phsyics

    A mass, m1 = 9.36 kg, is in equilibrium while connected to a light spring of constant k = 112 N/m that is fastened to a wall. A second mass, m2 = 6.71 kg, is slowly pushed up against mass m1, compressing the spring by the amount A = 0.201 m The system is

    asked by Anonymous on November 5, 2009
  95. PHYSICS

    A light spring (k= 130 N/m) is compressed 15 cm between two masses (1.2 kg and 2.4 kg) on a frictionless surface. The system is released and the masses fly apart. Which mass will have the larger magnitude momentum? Why? Which mass will have more kinetic

    asked by Camille on February 23, 2016
  96. Lakshman

    A 2M box is set on top of a 12M box. There is friction beween the masses. The 12M box is pushed against a spring. The spring is compressed a distance X by a 12 M mass. The 2M box does not slide from its position on top of the 12M mass. (the two masses are

    asked by Uma on December 12, 2011
  97. Physics

    The system shown in the figure is held initially at rest. Calculate the angular acceleration of the system as soon as it is released. You can treat MA (1 kg) and MB (12 kg) as point masses located on either end of the rod of mass MC (27 kg) and length L (9

    asked by James on June 20, 2012
  98. phy

    Three blocks are suspended at rest by the system of strings and frictionless pulleys shown in the figure below, where W = 29.0 N, and è = 26.6°. What are the weights w1 and w2?

    asked by anthony on October 25, 2012
  99. physics

    Three blocks are suspended at rest by the system of strings and frictionless pulleys shown in the figure below, where W = 29.0 . What are the weights w1 and w2?

    asked by anthony on October 25, 2012
  100. Physics

    A tension spring opposes being stretched, but offers no resistance to being compressed (think of a slinky!). A tension spring, with an equilibrium length of 1.25 m, is suspended by one end from a ceiling at a height of 2.5 m above the ground; a mass of 100

    asked by Nick on November 26, 2016

Pages

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
  26. 26
  27. 27
  28. 28
  29. 29
  30. 30
  31. 31
  32. 32
  33. 33
  34. 34
  35. 35
  36. 36
  37. 37
  38. 38
  39. 39
  40. 40
  41. 41
  42. 42
  43. 43
  44. 44
  45. 45
  46. 46
  47. 47
  48. 48
  49. 49
  50. 50
  51. 51
  52. 52
  53. 53
  54. 54
  55. 55
  56. 56
  57. 57
  58. 58
  59. 59
  60. 60
  61. 61
  62. 62
  63. 63
  64. 64
  65. 65
  66. 66
  67. 67
  68. 68
  69. 69
  70. 70
  71. 71
  72. 72
  73. 73
  74. 74
  75. 75
  76. 76
  77. 77
  78. 78
  79. 79
  80. 80
  81. 81
  82. 82
  83. 83
  84. 84
  85. 85
  86. 86
  87. 87
  88. 88
  89. 89
  90. 90
  91. 91
  92. 92
  93. 93
  94. 94
  95. 95
  96. 96
  97. 97
  98. 98
  99. 99
  100. 100
  101. 101
  102. 102
  103. 103
  104. 104
  105. 105
  106. 106
  107. 107
  108. 108
  109. 109
  110. 110
  111. 111
  112. 112
  113. 113
  114. 114
  115. 115
  116. 116
  117. 117
  118. 118
  119. 119
  120. 120
  121. 121
  122. 122
  123. 123
  124. 124
  125. 125
  126. 126
  127. 127
  128. 128
  129. 129
  130. 130
  131. 131
  132. 132
  133. 133
  134. 134
  135. 135
  136. 136
  137. 137
  138. 138
  139. 139
  140. 140
  141. 141
  142. 142
  143. 143
  144. 144
  145. 145
  146. 146
  147. 147
  148. 148
  149. 149
  150. 150
  151. 151
  152. 152
  153. 153
  154. 154
  155. 155
  156. 156
  157. 157
  158. 158
  159. 159
  160. 160
  161. 161
  162. 162
  163. 163
  164. 164
  165. 165
  166. 166
  167. 167
  168. 168
  169. 169
  170. 170
  171. 171
  172. 172
  173. 173
  174. 174
  175. 175
  176. 176
  177. 177
  178. 178
  179. 179
  180. 180
  181. 181
  182. 182
  183. 183
  184. 184
  185. 185
  186. 186
  187. 187
  188. 188
  189. 189
  190. 190
  191. 191
  192. 192
  193. 193
  194. 194
  195. 195
  196. 196
  197. 197
  198. 198
  199. 199
  200. 200
  201. 201
  202. 202
  203. 203
  204. 204
  205. 205
  206. 206
  207. 207
  208. 208
  209. 209
  210. 210
  211. 211
  212. 212
  213. 213
  214. 214
  215. 215
  216. 216
  217. 217
  218. 218
  219. 219
  220. 220
  221. 221
  222. 222
  223. 223
  224. 224
  225. 225
  226. 226
  227. 227
  228. 228
  229. 229
  230. 230
  231. 231
  232. 232
  233. 233
  234. 234
  235. 235
  236. 236
  237. 237
  238. 238
  239. 239
  240. 240
  241. 241
  242. 242
  243. 243
  244. 244
  245. 245
  246. 246
  247. 247
  248. 248
  249. 249
  250. 250
  251. 251
  252. 252
  253. 253
  254. 254
  255. 255
  256. 256
  257. 257
  258. 258
  259. 259
  260. 260
  261. 261
  262. 262
  263. 263
  264. 264
  265. 265
  266. 266
  267. 267
  268. 268
  269. 269
  270. 270
  271. 271
  272. 272
  273. 273
  274. 274
  275. 275
  276. 276
  277. 277
  278. 278
  279. 279
  280. 280
  281. 281
  282. 282
  283. 283
  284. 284
  285. 285
  286. 286
  287. 287
  288. 288
  289. 289
  290. 290
  291. 291
  292. 292
  293. 293
  294. 294
  295. 295
  296. 296
  297. 297
  298. 298
  299. 299
  300. 300
  301. 301
  302. 302
  303. 303
  304. 304
  305. 305
  306. 306
  307. 307
  308. 308
  309. 309
  310. 310
  311. 311
  312. 312
  313. 313
  314. 314
  315. 315
  316. 316
  317. 317
  318. 318
  319. 319
  320. 320
  321. 321
  322. 322
  323. 323
  324. 324
  325. 325
  326. 326
  327. 327
  328. 328
  329. 329
  330. 330
  331. 331
  332. 332
  333. 333
  334. 334
  335. 335
  336. 336
  337. 337
  338. 338
  339. 339
  340. 340
  341. 341
  342. 342
  343. 343
  344. 344
  345. 345
  346. 346
  347. 347
  348. 348
  349. 349
  350. 350
  351. 351
  352. 352
  353. 353
  354. 354
  355. 355
  356. 356
  357. 357
  358. 358
  359. 359
  360. 360
  361. 361
  362. 362
  363. 363
  364. 364
  365. 365
  366. 366
  367. 367
  368. 368
  369. 369
  370. 370
  371. 371
  372. 372
  373. 373
  374. 374
  375. 375
  376. 376
  377. 377
  378. 378
  379. 379
  380. 380
  381. 381
  382. 382
  383. 383
  384. 384
  385. 385
  386. 386
  387. 387
  388. 388
  389. 389
  390. 390
  391. 391
  392. 392
  393. 393
  394. 394
  395. 395
  396. 396
  397. 397
  398. 398
  399. 399
  400. 400
  401. 401
  402. 402
  403. 403
  404. 404
  405. 405
  406. 406
  407. 407
  408. 408
  409. 409
  410. 410
  411. 411
  412. 412
  413. 413
  414. 414
  415. 415
  416. 416
  417. 417
  418. 418
  419. 419
  420. 420
  421. 421
  422. 422
  423. 423
  424. 424
  425. 425
  426. 426
  427. 427
  428. 428
  429. 429
  430. 430
  431. 431
  432. 432
  433. 433
  434. 434
  435. 435
  436. 436
  437. 437
  438. 438
  439. 439
  440. 440
  441. 441
  442. 442
  443. 443
  444. 444
  445. 445
  446. 446
  447. 447
  448. 448
  449. 449
  450. 450
  451. 451
  452. 452
  453. 453
  454. 454
  455. 455
  456. 456
  457. 457
  458. 458
  459. 459
  460. 460
  461. 461
  462. 462
  463. 463
  464. 464
  465. 465
  466. 466
  467. 467
  468. 468
  469. 469
  470. 470
  471. 471
  472. 472
  473. 473
  474. 474
  475. 475
  476. 476
  477. 477
  478. 478
  479. 479
  480. 480
  481. 481
  482. 482
  483. 483
  484. 484
  485. 485
  486. 486
  487. 487
  488. 488
  489. 489
  490. 490
  491. 491
  492. 492
  493. 493
  494. 494
  495. 495
  496. 496
  497. 497
  498. 498
  499. 499
  500. 500
  501. 501
  502. 502
  503. 503
  504. 504
  505. 505
  506. 506
  507. 507
  508. 508
  509. 509
  510. 510
  511. 511
  512. 512
  513. 513
  514. 514
  515. 515
  516. 516
  517. 517
  518. 518
  519. 519
  520. 520
  521. 521
  522. 522
  523. 523
  524. 524
  525. 525
  526. 526
  527. 527
  528. 528
  529. 529
  530. 530
  531. 531
  532. 532
  533. 533
  534. 534
  535. 535
  536. 536
  537. 537
  538. 538
  539. 539
  540. 540
  541. 541
  542. 542
  543. 543
  544. 544
  545. 545
  546. 546
  547. 547
  548. 548
  549. 549
  550. 550
  551. 551
  552. 552
  553. 553
  554. 554
  555. 555
  556. 556
  557. 557
  558. 558
  559. 559
  560. 560
  561. 561
  562. 562
  563. 563
  564. 564
  565. 565
  566. 566
  567. 567
  568. 568
  569. 569
  570. 570
  571. 571
  572. 572
  573. 573
  574. 574
  575. 575
  576. 576
  577. 577
  578. 578
  579. 579
  580. 580
  581. 581
  582. 582
  583. 583
  584. 584
  585. 585
  586. 586
  587. 587
  588. 588
  589. 589
  590. 590
  591. 591
  592. 592
  593. 593
  594. 594
  595. 595
  596. 596
  597. 597
  598. 598
  599. 599
  600. 600
  601. 601
  602. 602
  603. 603
  604. 604
  605. 605
  606. 606
  607. 607
  608. 608
  609. 609
  610. 610
  611. 611
  612. 612
  613. 613
  614. 614
  615. 615
  616. 616
  617. 617
  618. 618
  619. 619
  620. 620
  621. 621
  622. 622
  623. 623
  624. 624
  625. 625
  626. 626
  627. 627
  628. 628
  629. 629
  630. 630
  631. 631
  632. 632
  633. 633
  634. 634
  635. 635
  636. 636
  637. 637
  638. 638