
A water skier, moving at a speed of 6.42 m/s, is being pulled by a tow rope that makes an angle of 39.7 ° with respect to the velocity of the boat (see the drawing). The tow rope is parallel to the water. The skier is moving in the same direction as the

A water skier, moving at a speed of 8.36 m/s, is being pulled by a tow rope that makes an angle of 33.4 ° with respect to the velocity of the boat (see the drawing). The tow rope is parallel to the water. The skier is moving in the same direction as the

A water skier, moving at a speed of 8.61 m/s, is being pulled by a tow rope that makes an angle of 34.9 ° with respect to the velocity of the boat. The tow rope is parallel to the water. The skier is moving in the same direction as the boat. If the

A waterskier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 83.0kg waterskier has an initial speed of 5.9 m/s. Later, the speed increases to 11.4 m/s. Determine the work done by the

A waterskier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 73.0kg waterskier has an initial speed of 7.1 m/s. Later, the speed increases to 10.9 m/s. Determine the work done by the


A waterskier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 71.6kg waterskier has an initial speed of 5.8 m/s. Later, the speed increases to 11.8 m/s. Determine the work done by the

A waterskier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 65.6kg waterskier has an initial speed of 5.2 m/s. Later, the speed increases to 11.9 m/s. Determine the work done by the

A waterskier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 63.6kg waterskier has an initial speed of 5.3 m/s. Later, the speed increases to 10.8 m/s. Determine the work done by the

A waterskier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 83.9kg waterskier has an initial speed of 6.3 m/s. Later, the speed increases to 10.1 m/s. Determine the work done by the

a water skier is being pulled by a tow rope attached to a boat. as the driver pushes the throttle forward,the skier accelerates. a 70.3kg water skier has an initial speed of 6.10m\s. determine the work done by the net external force acting on the skier.

A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 23.0° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 55.3 kg, and the coefficient of

A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 25.9° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 55.3 kg, and the coefficient of

A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 25.9° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 55.3 kg, and the coefficient of

A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 25.9° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 55.3 kg, and the coefficient of

A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 24.0° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 60.0 kg, and the coefficient of


A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 22.2° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 56.0 kg, and the coefficient of

A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 28.2 ° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 46.7 kg, and the coefficient of

A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 27.2 ° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 53.7 kg, and the coefficient of

The water skier in the figure is at an angle of 35degree with respect to the center line of the boat, and is being pulled at a constant speed of 15m/s . 1)If the tension in the tow rope is 90.0 , how much work does the rope do on the skier in 30.0 ? 2)How

The water skier in the figure is at an angle of 35degree with respect to the center line of the boat, and is being pulled at a constant speed of 15m/s . 1)If the tension in the tow rope is 90.0N, how much work does the rope do on the skier in 30.0s ? 2)How

A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 27.2 ° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 53.7 kg, and the coefficient of

A waterskier is being pulled at a steady speed in a straight line. her mass plus the mass of the ski is 65 kg. the pull of the tow rope on her is 520 N. a...i) What is the vertical component Y of the push of the water on the ski?? ....ii) What is the

A waterskier is being pulled at a steady speed in a straight line. her mass plus the mass of the ski is 65 kg. the pull of the tow rope on her is 520 N. a...i) What is the vertical component Y of the push of the water on the ski?? ....ii) What is the

A 68kg water skier is being pulled by a nylon (Young's modulus 3.7 x 109 N/m2) tow rope that is attached to a boat. The unstretched length of the rope is 15 m and its crosssection area is 1.8 x 105 m2. As the skier moves, a resistive force (due to the

A 66kg water skier is being pulled by a nylon (Young's modulus 3.7 x 109 N/m2) tow rope that is attached to a boat. The unstretched length of the rope is 20 m and its crosssection area is 2.8 x 105 m2. As the skier moves, a resistive force (due to the


A skier is pulled by a tow rope up a frictionless ski slope that makes an angle of 12 degrees with the horizontal. The rope moves parallel to the slope with a constant speed of 1.0 m/s. The force of the rope does 880 J of work on the skier as the skier

The water skier there has a mass of 71.0 kg. Find the magnitude of the net force acting on the skier when (a) she is accelerated from rest to a speed of 14.0 m/s in 9.00 s and (b) she lets go of the tow rope and glides to a halt in 16.0 s.

A water skier lets go of the tow rope upon leaving the end of a jump ramp at a speed of 17.9 m/s. As the drawing indicates, the skier has a speed of 11.1 m/s at the highest point of the jump. Ignoring air resistance, determine the skier's height H above

A water skier lets go of the tow rope upon leaving the end of a jump ramp at a speed of 14.9 m/s. As the drawing indicates, the skier has a speed of 10.9 m/s at the highest point of the jump. Ignoring air resistance, determine the skier's height H above

A waterskier lets go of the tow rope upon leaving the end of a jump ramp at a speed of v1 = 14.7 m/s. the skier has a speed of v2 = 12.7 m/s at the highest point of the jump. Ignoring air resistance, determine the skier's height H above the top of the

A 50 kg skier is pulled up a frictionless ski slope that makes an angle of 8 degrees with the horizontal by holding onto a tow rope that moves parallel to the slope. Determine the magnitude of the force of the rope on the skier at an instant when a) the

Hello! I am having trouble figuring out the answer for this question: A 60 kg water skier is being pulled behind a boat. If the propulsive force applied by the 500 kg boat is 2.50 * 10^3 N, determine the acceleration of the skier and tension force in the

A 80 kg skier grips a moving rope that is powered by an engine and is pulled at constant speed to the top of a 25 degree hill. The skier is pulled a distance x = 230m along the incline and it takes 2.3 min to reach the top of the hill. If the coefficient

The motor of a ski boat generates an average power of 7.30 104 W when the boat is moving at a constant speed of 10 m/s. When the boat is pulling a skier at the same speed, the engine must generate an average power of 8.40 104 W. What is the tension in the

A water skier has a mass of 73 kg. Find the magnitude of the net force acting on the skier when she lets go of the tow rope and glides to a halt in 20 s.


The motor of a ski boat generates an average power of 5.83 × 104 W when the boat is moving at a constant speed of 17.4 m/s. When the boat is pulling a skier at the same speed, the engine must generate an average power of 8.45 × 104 W. What is the tension

The motor of a ski boat generates an average power of 7.30 104 W when the boat is moving at a constant speed of 10 m/s. When the boat is pulling a skier at the same speed, the engine must generate an average power of 8.40 104 W. What is the tension in the

A skier of mass 65.0 kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 57.0 m up a 35° slope (assumed to be frictionless) at a constant speed of 2.0 m/s? J

A skier of mass 67.0 kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 59 m up a 32° slope (assumed to be frictionless) at a constant speed of 2.0 m/s?

A skier of mass 70.5 kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 60 m up a 38° slope (assumed to be frictionless) at a constant speed of 2.0 m/s?

A skier of mass 75.0 kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 60.0 m up a 35° slope (assumed to be frictionless) at a constant speed of 2.0 m/s?

A skier of mass 73.5 kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 58 m up a 32° slope (assumed to be frictionless) at a constant speed of 2.0 m/s?

A skier of mass 74.5 kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 55 m up a 31° slope (assumed to be frictionless) at a constant speed of 2.0 m/s?

a 63kg water skier is pulled up a 14.0 degree incline by a ropeparallel to the incline with a tension of 512 N. the coefficient ofkinetic friction is 0.27. What are the magnitude and direction ofthe skier's acceleration

a skier of mass 70.0kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 60.0 m up a 35.0 degree slope (assumed to be frictionless) at a constant speed of 2.0m/s? The Value of g is 9.81 m/s^2?


A skier of mass 71.0 kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 62.2 m up a 37.0 slope (assumed to be fric tionless) at a constant speed of 2.0 m/s? The acceleration of gravity is 9.81 m/s2 .

A boat with a horizontal tow rope pulls a water skier. She skies off to the side, so the rope makes an angle of 15.0° with her direction of motion, but in the same direction as the boat is traveling. The tension in the rope is 160 N. How much work is done

A skier of mass 74.6 kg is pulled up a slope by a motordriven cable. How much work is required to pull the skier 63.3 m up a 39.0◦ slope (assumed to be frictionless) at a constant speed of 2.0 m/s? The acceleration of gravity is 9.81 m/s 2 . Answer

1. A 12 kg wagon is being pulled at an angle of 38o above horizontal. What force is applied to the wagon if it accelerates from rest to a speed of 2.2 m/s over a distance of 3.4 m? (4 marks) 2. A 31.0 kg child on a swing reaches a maximum height of 1.92 m

A 62 kg water skier, moving at 14 m/s , lets go of the towline. a.Find her momentum. 868kgm/s b.What impulse is needed to bring her to rest? 868Ns c.If the water exerts an average force of 275 N on the skier, how long must the force act? 3.16 s d.How far

A 62 kg water skier, moving at 14 m/s , lets go of the towline. a.Find her momentum. 868kgm/s b.What impulse is needed to bring her to rest? 868Ns c.If the water exerts an average force of 275 N on the skier, how long must the force act? 3.16 s d.How far

A ski trail makes a vertical descent of 77 m. A novice skier, unable to control his speed, skis down this trail and is lucky enough not to hit any trees. If the skier is moving at 17 m/s at the bottom of the trail, calculate the total work done by friction

A ski trail makes a vertical descent of 77 m. A novice skier, unable to control his speed, skis down this trail and is lucky enough not to hit any trees. If the skier is moving at 17 m/s at the bottom of the trail, calculate the total work done by friction

A 75.0 kg novice skier is going down a hill with several secondary hills. Ignore frictional effects and assume the skier does not push off or slow himself down. If the initial hill is 38.7 m above the chalet level: (8 marks) a) What is the speed of the

A skier wants to build a rope tow to pull herself up a ski hill that is inclined at 15 with the horizontal. Calculate the tension needed in the rope to give the skier's 54kg body a 1.2 m/s^2 acceleration.


A skier wants to build a rope tow to pull herself up a ski hill that is inclined at 15 with the horizontal. Calculate the tension needed in the rope to give the skier's 54kg body a 1.2 m/s^2 acceleration.

A 74 kg skier is pulled 50 meters up a 30 degree incline. How much work is required to pull the skier up?

A waterskier is moving at a speed of 16.7 m/s. When she skis in the same direction as a traveling wave, she springs upward every 6.9 s because of the wave crests. When she skis in the direction opposite to the direction in which the wave moves, she

A 64.2kg skier coasts up a snowcovered hill that makes an angle of 23.8° with the horizontal. The initial speed of the skier is 7.18 m/s. After coasting 1.96 m up the slope, the skier has a speed of 3.13 m/s. Calculate the work done by the kinetic

Physics force of friction question a 63kg water skier is pulled across a lake by a rope that exerts a force of 3.2x10^2 and makes an angle 17 degrees above the horizontal. if the coefficient between the skies and the lake is 0.27 at what rate will the

A 64.9 kg skier coasts up a snowcovered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate the work done by

A 64.9 kg skier coasts up a snowcovered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate the work done by

A 64.9 kg skier coasts up a snowcovered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate the work done by

A 61.8 kg skier coasts up a snowcovered hill that makes an angle of 26.0° with the horizontal. The initial speed of the skier is 6.10 m/s. After coasting a distance of 1.86 m up the slope, the speed of the skier is 4.48 m/s. Calculate the work done by

A 62 kg water skier, moving at 14 m/s , lets go of the towline. Momentum= 868 kgm/s Impulse= 868 Ns c.If the water exerts an average force of 275 N on the skier, how long must the force act? 3.16 s d. How far does she travel during this time? I'm


A 61kg skier, coasting down a hill that is an angle of 23 to the horizontal, experiences a force of kinetic friction of magnitude 72N. The skier's speed is 3.5m/s near the top of the slope. Determine the speed after the skier has travelled 62m downhill.

A 65.0kg skier coasts up a snowcovered hill that makes an angle of 27.4° with the horizontal. The initial speed of the skier is 6.37 m/s. After coasting 2.07 m up the slope, the skier has a speed of 4.06 m/s. Calculate the work done by the kinetic

A man pushes a stalled car with a horizontal force of 312 N. The car does not move. What is the frictional drag force on the car? A waterskier (mass=60kg) is pulled by a boat with a horizontal force of 300N. The boat and the skier have a constant

A 61kg snow skier is being pulled up a 14 ° slope by a steel (Young's modulus 2.0 x 1011 N/m2) cable. The cable has a crosssection area of 7.0 x 105 m2. The cable applies a force to the skier, and, in doing so, the cable stretches by 2.1 x 104 m. A

A 85kg snow skier is being pulled up a 17 ° slope by a steel (Young's modulus 2.0 x 1011 N/m2) cable. The cable has a crosssection area of 7.4 x 105 m2. The cable applies a force to the skier, and, in doing so, the cable stretches by 2.6 x 104 m. A

Skier A of mass 71kg slides down a slope and makes a completely inelastic collision with Skier B, who is stationary, and has a mass of 55kg.Immediately after the collision both skiers have a speed of 5.8m/s. a)Find the speed of skier A immediately before

A boat exerts a force of 417N pulling a water skier who is 64kg at rest. The skier speed is 15m/s. over what distance was the force exerted?

A 65kg skier starts at rest and slides 30 m down a hill inclined at 12∘ relative to the horizontal. Consider the force of friction on the skier to be negligible. Determine the speed of the skier after sliding 30 m downhill.

A 150 lb (68 kg) skier impacts a person who is standing at the bottom of the ski hill. If our skier began the descent at a height of 40 meters, how fast was our skier moving to the bottom of the hill?

A 55.3 kg skier is moving at 14.9 m/s on a frictionless horizontal, snow covered plateau when she encounters a rough patch 1.7 m long. The coefficient of kinetic friction between this patch and her skis is 0.27. After crossing the rough patch, what is the


A 65 kg water skier is pulled up a 15° inclined by a role parallel to the incline with a tension of 500N. The coefficient of kinetic friction is .25. What are the magnitude and direction of the skier's acceleration? I found the weight its 637.65 I found

A 60 kg skier with an initial speed of 12 m/s coasts up a 2.5 m high rise that makes a 35 degree angle with the horizontal. If the coefficient of friction between the skis and the snow is .08, find the speed of the skier when he reaches the top of the

A small plane tows a glider at constant speed and altitude. If the plane does 2.00X10^5 J of work to tow the glider 165 m and the tension in the tow rope is 2660 N, what is the angle between the tow rope and the horizontal?

A 69.4kg skier coasts up a snowcovered hill that makes an angle of 24.3° with the horizontal. The initial speed of the skier is 7.04 m/s. After coasting 1.78 m up the slope, the skier has a speed of 3.04 m/s. Calculate the work done by the kinetic

A 60 kg skier moving at 14 m/s strikes a snow bank and comes to a stop in 4 seconds. What is the average impact force on the skier?

A 71.9kg skier coasts up a snowcovered hill that makes an angle of 27.5 ° with the horizontal. The initial speed of the skier is 9.67 m/s. After coasting a distance of 1.50 m up the slope, the speed of the skier is 4.52 m/s. (a) Find the work done by

In downhill speed skiing a skier is retarded by both the air drag force on the body and the kinetic frictional force on the skis. Suppose the slope angle is è = 37.5°, the snow is dry snow with a coefficient of kinetic friction ìk = 0.0400, the mass of

In downhill speed skiing a skier is retarded by both the air drag force on the body and the kinetic frictional force on the skis. Suppose the slope angle is θ = 39.5°, the snow is dry snow with a coefficient of kinetic friction μk = 0.0400, the

In downhill speed skiing a skier is retarded by both the air drag force on the body and the kinetic frictional force on the skis. Suppose the slope angle is θ = 39.5°, the snow is dry snow with a coefficient of kinetic friction μk = 0.0400, the

What is the terminal speed for an 77 kg skier going down a 45 âˆ˜ snowcovered slope on wooden skis Î¼k= 0.060? Assume that the skier is 1.8 m tall and 0.40 m wide. Assume the skier's drag coefficient is 0.80. Express your answer using two significant


You are skier A, the first skier in a skiing event with three other skiers. Compared to your time, skier B is slower, by a time of +00:28. Skier C has a time of +02:13, and skier D has a time of 01:24. Who is the fastest skier

You are skier A, the first skier in a skiing event with three other skiers. Compared to your time, skier B is slower, by a time of +00:28. Skier C has a time of +02:13, and skier D has a time of 01:24. Who is the fastest skier.

A 64 kg skier is on a 18 degree slope. The coefficient of kinetic friction between the skis and snow is .04. A) What is the weight of the skier? B) what is the normal force of the slope on the skier? C) why is the “parallel” force on the skier? D) what

A man pulls a rope over a simple pulley attached to the bow of a rowboat. The man’s hands are 8 feet above the water and the bow of the boat is 1 foot above the water. How fast must the man pull the rope to tow the boat in at 3 feet per second when it is

A 64.5kg skier moving horizontally at 4.83 m/s encounters a 16.7° incline. a) How far up the incline will the skier move before she momentarily stops, ignoring friction? b) How far up the incline will the skier move if the coefficient of kinetic friction

A 69kg skier moving horizontally at 4.1 m/s encounters a 21° incline. (a) How far up the incline will the skier move before she momentarily stops, ignoring friction? (b) How far up the incline will the skier move if the coefficient of kinetic friction

A 72 kg skier leaves the end of a skijump ramp with a velocity of 24 m/s directed 25◦ above the horizontal. The skier returns to the ground at a point that is 14 m below the end of the ramp with a total speed of 22 m/s. (a) What is the rate at which

A ski trail makes a vertical descent of 78.0 m (as shown in the figure below ). A novice skier, unable to control his speed, skis down this trail and is lucky enough not to hit any trees. If the skier is moving at 12.1 m/s at the bottom of the trail,

I have a couple physics questions I need help with please! If you could show me stepbystep directions, I'd really appreciate it! A boat with a horizontal tow rope pulls a water skier. She skis off to the side, so the rope makes an angle of 15.0 degrees

A boat towing a water skier leaves a dock and travels east at a speed of 20mph. Two minutes later, a second boat towing another skier leaves the dock in the same direction at a speed of 25mph. How long will it take the second boat to overtake the first


A 75.5 kg skier encounters a dip in the snow's surface that has a circular cross section with radius of curvature of $r$ = 10.1 m. If the skier's speed at point A in the figure below is 7.82 m/s, what is the normal force exerted by the snow on the skier at

A 69 kg skier encounters a dip in the snow's surface that has a circular cross section with a radius of curvature of 12 m. If the skier's speed at point A as shown below is 8.4 m/s, what is the normal force exerted by the snow on the skier at point B?

A skier starts at rest and glides (without friction) directly down the fall line from the highest point of a giant snowball with a radius of r=31.7 m . The skier can be observed as a point mass and the air resistance is negligible. What speed v does the

A 59kg person on skis starts from rest down a hill sloped at 36° from the horizontal. The coefficient of friction between the skis and the snow is 0.16. After the skier had been moving for 5.0 s, the friction of the snow suddenly increased and made the

A skier is coasting on perfectt smooth snow at 7.0 m/s and crosses a rough patch of snow 35m long. If the frictional force exerted on the skier is 6.0 N, what is her speed as she leaves the patch of snow? Assume the skier and her skis habe a mass of 90.0