A block of mass m = 5 kg is attached to a spring (k = 28 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 3 cm, as shown in

39,270 results
  1. physics

    A block of mass m = 3.53 kg is attached to a spring which is resting on a horizontal frictionless table. The block is pushed into the spring, compressing it by 5.00 m, and is then released from rest. The spring begins to push the block back toward the

  2. physics

    a rifle bullet of mass 8.0g strikes and embeds itself in a block of mass 0.992kg that rests on a frictionless horizontal surface and is attached to a coil spring. the impact compresses the spring 15.0cm. calibration of the spring shows that a force of

  3. physics

    a block of mass 0.1kg is attached to spring and placed on a horizontal frictionless table .the spring is stretched 20cm when a force of 5n is applied.calculate the spring constant

  4. Physics

    An ideal massless spring is fixed to the wall at one end. A block of mass M attached to the other end of the spring oscillates with amplitude A on a frictionless, horizontal surface. The maximum speed of the block is V_m. The force constant of the spring

  5. physics

    A block of ice of mass 4.10 kg is placed against a horizontal spring that has force constant k = 210 N/m and is compressed a distance 2.60×10−2 m. The spring is released and accelerates the block along a horizontal surface. You can ignore friction and

  6. Physics

    A block with mass m = 2.00kg is placed against a spring on a frictionless incline with angle (30 degrees). (The block is not attached to the spring.) The spring with spring constant k = 19.6 N/cm, is compressed 20.0 cm and then released. a.) What is the

  7. physics

    A 750g block is attached to a vertical spring whose stiffness constant is 1N/m . The block is released at the position where the spring is unextended. a) What is the maximum extension of the spring? How long does it take the block to reach the lowest

  8. Physics

    A block of mass m is dropped onto a relaxed spring constant k. The block becomes attached to the spring and compresses the spring a distance d before momentarily stopping. (Use any variable or symbol stated above along with the following as necessary: g

  9. physics

    A 350 g block is attached to a vertical spring whose stiffness constant is 12 N/m . The block is released at the position where the spring is unextended. a) What is the maximum extension of the spring? b)How long does it take the block to reach the lowest

  10. Physics- springs

    Block A has a mass 1.00kg, and block B has a mass 3.00 kg. the blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring which egligible mass, is not fastened to

  11. Physics 2

    A 10 g bullet is fired into, and embeds itself in, a 2 kg block attached to a spring with a force constant of 19.6 n/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and

  12. PHYSICS

    a 0.1 kg mass is suspended at rest from a spring near the Earth's surface, the distance that the spring is stretched is measured to be 1.0 cm. What is the spring constant of the spring (remember the MKS units)? A mass of 2 kg is attached to a spring with

  13. PHYSICS

    A block with mass m1 = 9.0 kg is on an incline with an angle θ = 32.0° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.28 and μs = 0.308. To keep the

  14. College Physics (repost)

    A 4.1 kg block is attached to a spring with a force constant of 550 N/m , as shown in the figure. Find the work done by the spring on the block as the block moves from A to B along paths 1 and 2. W=? How do your results depend on the mass of the block?

  15. Physics

    Problem 4: A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of k= 2.5 N/cm. The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is being compressed, (a)

  16. Physics

    A 290 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.6 N/cm. The block becomes attached to the spring and compresses the spring 10 cm before momentarily stopping. (a) While the spring is being compressed, what work is

  17. physics

    A block of mass m = 5 kg is attached to a spring (k = 35 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 4 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

  18. Physics (Energy and Momentum)

    A block of mass m1 = 1.00 kg slides along a frictionless table with a speed of 16.0 m/s. Directly in front of it, and moving in the same direction, is a block of mass m2 = 6.00 kg moving at 8.00 m/s. A massless spring with a spring constant k = 1320 N/m is

  19. College Physics

    A block with mass m = 2.00kg is placed against a spring on a frictionless incline with angle (30 degrees). (The block is not attached to the spring.) The spring with spring constant k = 19.6 N/cm, is compressed 20.0 cm and then released. a.) What is the

  20. Physics

    Need help on part B! A 2.50 mass is pushed against a horizontal spring of force constant 26.0 on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed

  21. physics

    A 13.1-g bullet is fired into a block of wood at 261 m/s. The block is attached to a spring that has a spring constant of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop.

  22. Physics

    A 4.1 kg block is attached to a spring with a force constant of 550 N/m , as shown in the figure. Find the work done by the spring on the block as the block moves from A to B along paths 1 and 2. W=? How do your results depend on the mass of the block?

  23. Physics

    A bullet is fired into a block of wood with speed 250 m/s. The block is attached to a spring that has a spring of 200 N/m. The block embedded bullet compresses the spring a distance of 30.0 cm to the right. Determine the mass of the wooden block

  24. Physics

    Consider a horizontal spring of stiffness k = 87 N/m attached to a 1.5 kg block at one end and a wall at the other. The spring is compressed by an amount x = 20 cm from its unstretched length, x0. a. If the mass is released from rest, how much work was

  25. Physics

    A block with mass m = 2.00 kg is placed against a spring on a frictionless incline with angle θ=30.0° (see figure). The block is NOT attached to the spring. The spring, with spring constant k = 19.6 N/cm, is compressed 20.0 cm from its unloaded

  26. Physics

    1. A 3 kg block collides with a massless spring of spring constant 90 N/m attached to a wall. The speed of the block was observed to be 1.5 m/s at the moment of collision. The acceleration of gravity is 9.8 m/s^2. How far does the spring compress if the

  27. Physics - Spring

    Suppose a 1.5kg block of wood is slid along a floor and it compresses a spring that is attached horizontally to a wall. The spring constant is 555N/m and the block of wood is traveling 9.0m/s when it hits the spring. Assume that the floor is frictionless

  28. Physics

    A block of mass m1=1.6kg, initially moving to the right with a velocity of +4m/s on a frictionless horizontal track, colides with a massless spring attached to a second block of m2=2.1kg moving left with a velocity of -2.5m/s. The spring constant is 600

  29. Physics

    A block with mass 0.55 kg on a frictionless surface is attached to a spring with spring constant 43 N/m. The block is pulled from the equilibrium position and released. What is the period of the system?

  30. Physics

    The figure below shows block 1 of mass 0.200 kg sliding to the right over a frictionless elevated surface at a speed of 5.00 m/s. The block undergoes an elastic collision with stationary block 2, which is attached to a spring of spring constant 1208.5 N/m.

  31. Physics

    A block of mass M=6 kg and initial velocity v=0.8m/s slides on a frictionless horizontal surface and collides with a relaxed spring of unknown spring constant. The other end of the spring is attached to a wall. If the maximum compression of the spring is

  32. Physics

    A block of mass m1 = 2.4 kg initially moving to the right with a speed of 3.3 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.1 kg initially moving to the left with a speed of 1.5 m/s as shown in

  33. physics

    A block of mass m = 5 kg is attached to a spring (k = 28 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 3 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

  34. Physics

    A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring of spring constant 390 N/m. When t = 2.30 s, the position and velocity of the block are x = 0.173 m and v = 2.830 m/s. (a) What is the amplitude of the oscillations? What

  35. physics

    A simple harmonic oscillator consists of a block of mass 4.40 kg attached to a spring of spring constant 110 N/m. When t = 1.00 s, the position and velocity of the block are x = 0.126 m and v = 4.120 m/s. (a) What is the amplitude of the oscillations? What

  36. Physics

    An ideal spring with a stiffness of 329 N/m is attached to a wall, and its other end is attached to a block that has a mass of 15.0 kg. The spring/block system is then stretched away from the spring's relaxed position until 57.0 J of mechanical energy is

  37. physics

    a block of mass 0,5kg is attached to a spring .The spring is compressed to a distance of0,1m.The block is released .The block moves 0,07m past the equilibrium position .What is the force of friction that does work on the block. spring constant is 500

  38. Physics Urgent please help

    A spring of negligible mass, spring constant k = 82 N/m, and natural length l = 1.2 m is hanging vertically. This is shown in the left side where the spring is neither stretched nor compressed. In the central one, a block of mass M = 5 kg is attached to

  39. Physics

    VERTICAL SPRING A spring of negligible mass, spring constant k = 89 N/m, and natural length l = 1.4 m is hanging vertically. This is shown in the left figure below where the spring is neither stretched nor compressed. In the central figure, a block of mass

  40. physics (work shown)

    A 0.63-kg block is hung from and stretches a spring that is attached to the ceiling. A second block is attached to the first one, and the amount that the spring stretches from its unstrained length quadruples. What is the mass of the second block? My work

  41. physics

    At t = 0 a block with mass M = 5 kg moves with a velocity v = 2 m/s at position xo = -.33 m from the equilibrium position of the spring. The block is attached to a massless spring of spring constant k = 61.2 N/m and slides on a frictionless surface. At

  42. math

    block A: mass = 100·g, spring stretched 10·cm block B: mass = 400·g, spring stretched 20·cm block C: mass = 200·g, spring stretched 20·cm block D: mass = 200·g, spring stretched 20·cm Rank the blocks, from largest to smallest, based on the

  43. physics

    a block of mass 0,5kg is attached to a spring.The spring is compressed to a distance of 0,1m .The block is released .The block moves 0.07m past the eequilibrium position .What is the force of friction that does work on the block? spring const is 500. F -kx

  44. Physics

    A 395.0 g block is dropped onto a vertical spring with a spring constant k = 252.0 N/m. The block becomes attached to the spring, and the spring compresses 0.29 m before momentarily stopping. While the spring is being compressed, what work is done by the

  45. Physics - please help me..

    A 395.0 g block is dropped onto a vertical spring with a spring constant k = 252.0 N/m. The block becomes attached to the spring, and the spring compresses 0.29 m before momentarily stopping. While the spring is being compressed, what work is done by the

  46. Physics - please help!!

    A 395.0 g block is dropped onto a vertical spring with a spring constant k = 252.0 N/m. The block becomes attached to the spring, and the spring compresses 0.29 m before momentarily stopping. While the spring is being compressed, what work is done by the

  47. physics

    A 390.0 g block is dropped onto a vertical spring with a spring constant k = 252.0 N/m. The block becomes attached to the spring, and the spring compresses 0.15 m before momentarily stopping. While the spring is being compressed, what work is done by the

  48. physics

    A 395.0 g block is dropped onto a vertical spring with a spring constant k = 252.0 N/m. The block becomes attached to the spring, and the spring compresses 0.29 m before momentarily stopping. While the spring is being compressed, what work is done by the

  49. physics

    A 395.0 g block is dropped onto a vertical spring with a spring constant k = 252.0 N/m. The block becomes attached to the spring, and the spring compresses 0.29 m before momentarily stopping. While the spring is being compressed, what work is done by the

  50. Physics

    A 1.40- block is on a frictionless, 20 inclined plane. The block is attached to a spring ( = 40.0 ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0- suspended mass. The

  51. physics

    A 0.44-kg block is hung from and stretches a spring that is attached to the ceiling. A second block is attached to the first one, and the amount that the spring stretches from its unstretched length triples. What is the mass of the second block?

  52. PHYSICS

    A block is on a 24 degree incline, with a rope attached to a spring at the top of the ramp which has a spring constant of 65 N/m. If the spring is stretched 1.3 m, the coefficient of friction is 0.01, and the acceleration of the block is 0.35 up the

  53. physics

    A block of unknown mass is attached to a spring with a spring constant of 6.00 N/m and undergoes simple harmonic motion with an amplitude of 12.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be

  54. physicis

    A block of mass m1 = 4.00 kg slides along a frictionless table with a speed of 16.0 m/s. Directly in front of it, and moving in the same direction, is a block of mass m2 = 5.00 kg moving at 7.00 m/s. A massless spring with a spring constant k = 1220 N/m is

  55. physics

    A 7 kg block is pushed by an external force against a spring with spring constant 124 N/m until the spring is compressed by 2.1 m from its uncompressed length (x = 0). The block rests on a horizontal plane that has a coefficient of kinetic friction of 0.7

  56. Physics

    A block of mass 2 kg attached to a spring lies on a flat surface. When the block is pulled 5 cm to the right a force with a magnitude of 300 N is need to hold it in place. What is the work done by the spring when the block moves from x = 10 cm to x = 12

  57. Physics

    A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much work is done (a) by the block

  58. Physics please help?????

    A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much work is done (a) by the block

  59. Physics

    A 3 kg block collides with a massless spring of spring constant 90 N/m attached to a wall. The speed of the block was observed to be 1.5 m/s at the moment of collision. The acceleration of gravity is 9.8 m/s^2. How far does the spring compress if the

  60. Physics

    A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much work is done (a) by the block

  61. physics

    a 7.0kg block and a 12kg block sit on a frictionless table. Between and touching, but not attached to, the blocks is a spring that is compressed by 13.5 cm. the spring has a spring constant of 1200 N/m. if the spring were released at what speed would each

  62. Physics

    A(n) 160 g block is pushed by an external force against a spring with spring constant of 1260 N/m until the spring is compressed by 11.8 cm from its uncompressed length. The compressed spring and block rests at the bottom of an incline of angle θ =

  63. phys2

    A 2.9-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spring is attached to a wall, as shown. The initial height of the block is 0.34 m above the lowest part of the slide and the spring

  64. physics

    Could someone assist me in setting up this equation? Thanks!! A block of mass 2 kg attached to a spring lies on a flat surface. When the block is pulled 5 cm to the right a force with a magnitude of 340 N is need to hold it in place. What is the work done

  65. physics

    Two identical springs (neglect their masses) are used to “play catch” with a small block of mass 200 g (see the figure). Spring A is attached to the floor and compressed 10.0 cm with the mass on the end of it (loosely). Spring A is released from rest

  66. mechanics: spring problem

    You drop a block from rest from a height h=3 m. The block lands on the spring at height h1 = 1.5 meters (spring constant = 160Nm) and compresses it 0.5 m before the block and spring momentarilty come to rest. (The spring then pushes the block upward.) What

  67. Physics

    A block with mass 0.55 kg on a frictionless surface is attached to a spring with spring constant 43 N/m. The block is pulled from the equilibrium position and released. What is the period of the system?

  68. phys223

    What is the amplitude of the motion? Remember, at t = 0 a block with mass M = 5 kg moves with a velocity v = 2 m/s at position xo = -.33 m from the equilibrium position of the spring. The block is attached to a massless spring of spring constant k = 61.2

  69. physics

    Two identical springs (neglect their masses) are used to “play catch” with a small block of mass 200 g (see the figure). Spring A is attached to the floor and compressed 10.0 cm with the mass on the end of it (loosely). Spring A is released from rest

  70. physics

    A block with mass 0.55 kg on a frictionless surface is attached to a spring with spring constant 39 N/m. The block is pulled from the equilibrium position and released. What is the period of the system? answer in seconds...

  71. physics ( please help me)

    a block with a mass of 5.00 kg is moving at 8.00 m/s^-1 along a frictionless horizonal surface toward a spring with force constant k= 500 N/m^1 that is attached to a wall.find the maximum distance the spring is compressed. the spring has negligible mass.

  72. physics mechanics

    A block weighing 17 N oscillates at one end of a vertical spring for which k = 120 N/m; the other end of the spring is attached to a ceiling. At a certain instant the spring is stretched 0.24 m beyond its relaxed length (the length when no object is

  73. physics

    A 350 g block is attached to a vertical spring whose stiffness constant is 12 N/m . The block is released at the position where the spring is unextended. a) What is the maximum extension of the spring? b)How long does it take the block to reach the lowest

  74. physics

    A 350 g block is attached to a vertical spring whose stiffness constant is 12 N/m . The block is released at the position where the spring is unextended. a) What is the maximum extension of the spring? b)How long does it take the block to reach the lowest

  75. physics

    A 350 g block is attached to a vertical spring whose stiffness constant is 12 N/m . The block is released at the position where the spring is unextended. a) What is the maximum extension of the spring? b)How long does it take the block to reach the lowest

  76. physics please help

    A spring is hung from the ceiling. A 0.300 kg block is then attached to the free end of the spring. When released from rest, the block drops 0.170 m before momentarily coming to rest. (a) What is the spring constant of the spring? (b) Find the angular

  77. physics help me

    A spring is hung from the ceiling. A 0.300 kg block is then attached to the free end of the spring. When released from rest, the block drops 0.170 m before momentarily coming to rest. (a) What is the spring constant of the spring? (b) Find the angular

  78. Physics

    A block of mass m1 = 2.4 kg initially moving to the right with a speed of 3.3 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.1 kg initially moving to the left with a speed of 1.5 m/s as shown in

  79. Physics

    A horizontal spring attached to a wall has a force constant of 780 N/m. A block of mass 1.70 kg is attached to the spring and oscillates freely on a horizontal, frictionless surface as in the figure below. The initial goal of this problem is to find the

  80. PHYSICS

    A spring is hung from the ceiling. A 0.477 -kg block is then attached to the free end of the spring. When released from rest, the block drops 0.153 m before momentarily coming to rest, after which it moves back upward. (a) What is the spring constant of

  81. physics

    A spring is hung from the ceiling. A 0.536 -kg block is then attached to the free end of the spring. When released from rest, the block drops 0.180 m before momentarily coming to rest, after which it moves back upward. (a) What is the spring constant of

  82. physics

    A new type of spring is found where the spring force F is given by F=-kx + bx^2 where k=400 N/ m and b=100 N/m^2 and x is the expansion (or compression) of the spring from its equilibrium position. The spring is attached to a point mass of 1 kg sitting on

  83. Physics

    A 2.50 mass is pushed against a horizontal spring of force constant 26.0 on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed enough to store 15.0 of

  84. Physics

    A block of mass m = 3.65 kg is attached to a spring (k = 27.5 N/m) by a rope that hangs over a pulley of mass M = 7.30 kg and radius R = 2.81 cm, as shown in the figure. a) Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of

  85. physics

    A block of mass m = 2.67 kg is attached to a spring (k = 32.3 N/m) by a rope that hangs over a pulley of mass M = 5.34 kg and radius R = 6.41 cm, as shown in the figure. a) Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of

  86. Physics

    A 2.95 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0330 m. The spring has force constant 900 N/m. The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are

  87. physics

    Two blocks of masses M and 3M are placed on a horizontal, frictionless surface. A light spring is attached to one of them, and the blocks are pushed together with the spring between them. A cord initially holding the blocks together is burned; after this

  88. Physics

    A 330.0 g block is dropped onto a vertical spring with a spring constant k = 234.0 N/m. The block becomes attached to the spring, and the spring compresses 0.26 m before momentarily stopping. A) While the spring is being compressed, what what is the change

  89. physics

    A 506 g block is released from rest at height h0 above a vertical spring with spring constant k = 500 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 18.4 cm. How much work is done (a) by the block

  90. physics

    A block of mass m1 = 2.4 kg slides along a frictionless table with a speed of 8 m/s. Directly in front of it, and moving in the same direction, is a block of mass m2 = 5.0 kg moving at 2.8 m/s. A massless spring with spring constant k = 1140 N/m is

  91. science

    A light spring is initially used to suspend masses from the ceiling. When a 4.0 kg mass is attached to the spring, its length is 22.0 cm. When an additional 2.3 kg mass is attached to the bottom of the 4.0 kg mass, the spring's length measures 26.8 cm.

  92. physics

    A 4 kg block is pushed by an external force against a spring with spring constant 137 N/m until the spring is compressed by 2.1 m from its uncompressed length (x = 0). The block rests on a horizontal plane that has a coefficient of kinetic friction of 0.58

  93. physics/ torques

    A block of mass m = 5 kg is attached to a spring (k = 35 N/m) by a rope that hangs over a pulley of mass M = 7 kg and radius R = 4 cm, as shown in the figure. Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley,

  94. physics

    Need help with this problem because I am clueless when it comes to physics. I'd appreciate it if I could get the steps to solving this. A 10kg block is attached to a spring. The spring has a spring constant of 50N/m and is stretched to a displacement of

  95. Physics

    Consider the figure above, where a rigid beam of negligible mass and 10 m long is supported by a cable attached to a spring. When NO block is hung from the beam, the length L (cable-spring) is equal to 5 m. Assume that immediately after block (weight of

  96. Physics

    Hung vertically, a mass less spring extends by 3.00 cm a mass of 739. G is attached to its lower end. The same mass and spring are then placed apart on a table. The spring is fixed in place and then the mass is given a velocity of 0.900 m/s towards the

  97. physics

    A simple harmonic oscillator consists of a block of mass 4.40 kg attached to a spring of spring constant 110 N/m. When t = 1.00 s, the position and velocity of the block are x = 0.126 m and v = 4.120 m/s. (a) What is the amplitude of the oscillations? What

  98. physics

    a 0.1 kg mass is suspended at rest from a spring near the Earth's surface, the distance that the spring is stretched is measured to be 1.0 cm. What is the spring constant of the spring (remember the MKS units)? A mass of 2 kg is attached to a spring with

  99. physics

    If a 0.1 kg mass is suspended at rest from a spring near the Earth's surface, the distance that the spring is stretched is measured to be 1.0 cm. What is the spring constant of the spring (remember the MKS units)? A mass of 2 kg is attached to a spring

  100. mechanics

    You drop a block from rest. The block lands on the spring (spring constant = 160Nm) and compresses it .5 m before the block and spring momentarilty come to rest. (The spring then pushes the block upward.) What is the mass of the block? If needed, g=10ms2.

Pages

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20