Three blocks are in contact with each other on a frictionless horizontal surface. A 696 N horizontal force is applied to the block with mass of 4.7 kg as shown in the figure below. The acceleration of gravity is 9.8

102,023 results

physics

Three blocks are in contact with each other on a frictionless horizontal surface. A 696 N horizontal force is applied to the block with mass of 4.7 kg as shown in the figure below. The acceleration of gravity is 9.8 m/s 2 . 4.7 kg 5.5 kg 7.1 kg d) What is the magnitude ...

physics

Three blocks are in contact with each other on a frictionless horizontal surface. A 696 N horizontal force is applied to the block with mass of 4.7 kg as shown in the figure below. The acceleration of gravity is 9.8 m/s 2 . 4.7 kg 5.5 kg 7.1 kg F a) What is the net force...

physics

Three blocks are in contact with each other on a frictionless horizontal surface. A 696 N horizontal force is applied to the block with mass of 4.7 kg as shown in the figure below. The acceleration of gravity is 9.8 m/s 2 . 4.7 kg 5.5 kg 7.1 kg ) What is the resultant ...

Physics

Three blocks are in contact with each other on a frictionless horizontal surface. A 417 N horizontal force is applied to the block with mass of 3.7 kg as shown in the figure below. The acceleration of gravity is 9.8 m/s^2. (the picture looks like this) F *----->[3.7 ...

Physics

Three blocks on a frictionless horizontal surface are in contact with each other A force F is applied to block 1 (m1) Draw a free body diagram for each block ok for the diagram is the force F applied horizontal to mass one does this force act on m2 all the blocks are lines up ...

physics

Three blocks are in contact with each other on a frictionless horizontal surface. A 696 N horizontal force is applied to the block with mass of 4.7 kg as shown in the figure below. The acceleration of gravity is 9.8 m/s 2 . 4.7 kg 5.5 kg 7.1 kg F a) What is the net force...

Physics

Three blocks on a frictionless horizontal surface are in contact with each other, as shown below. A force F is applied to block A (mass mA). (a) Draw a free-body diagram for each block. Determine (b) the acceleration of the system (in terms of mA, mB, mC), (c) the net force on...

physics

Three blocks are in contact with each other on a frictionless, horizontal surface, as shown below. A horizontal force is applied to m1. Take m1 = 2.00 kg, m2 = 3.00 kg, m3 = 5.00 kg, and F = 22.0 N

Physics

Ok I got a question I asked before except there are other parts that I didn't ask so here we go Three blocks on a frictionless horizontal surface are in contact with each other A force F is applied to block 1 (mass m1). Draw a free-body diagram for each block ok I did this the...

Physics

Block B has a mass of 4.2 kg and block A has a mass of 2.6 kg. They are in contact and slide over a frictionless horizontal surface. A force of 11 N acts on B.(force applied on block b then block a , they are beside each other) what is the force on B due to A if the blocks are...

Physics

Two blocks are in contact on a horizontal, frictionless table. Block 1 has a mass of 4.39 kg and block 2 has a mass of 2.59 kg. A horizontal force of magnitude 8.25 N is applied to the one of the blocks. Find the magnitude of the force between the blocks (a) if the given force...

physics

Three blocks on a frictionless horizontal surface are in contact with each other. A force F is applied to block A and the blocks start to slide to the right of their initial position. Determine the acceleration of the system, if m_A = 12 kg, m_B = 38 kg, m_C = 4700 g, and F = ...

Physics

A block of mass 3m is placed on a frictionless horizontal surface, and a second block of mass m is placed on top of the first block. The surfaces of the blocks are rough. A constant force of magnitude F is applied to the first block as shown in the figure. (a) Construct free-...

physics

Two blocks of masses m1 = 4.00 kg and m2 = 3.00 kg are placed in contact with each other on a frictionless horizontal surface. A constant force F = 9.00 N is applied to the block of mass m1. a) Determine the magnitude of the acceleration of the two-block system. b) Determine ...

Phys

Three blocks on a frictionless horizontal surface are in contact with each other. A force F is applied to block A (mass mA). (a) Draw a free body diagram for each block. I've drawn it and it looks like this, but I'm not sure if I'm including everything. ^normal force F-->|...

college physics

Two blocks of masses m1 = 4.00 kg and m2 = 3.00 kg are placed in contact with each other on a frictionless horizontal surface. A constant force F = 9.00 N is applied to the block of mass m1. a) Determine the magnitude of the acceleration of the two-block system. b) Determine ...

Physics

Two blocks, stacked one on top of the other, slide on a frictionless horizontal surface. The surface between the two blocks is rough, however, with a coefficient of static friction equal to 0.50. The top block has a mass of 2.6 kg, and the bottom block's mass is 4.0 kg. If a ...

Physics

Two blocks, stacked one on top of the other, slide on a frictionless horizontal surface. The surface between the two blocks is rough, however, with a coefficient of static friction equal to 0.50. The top block has a mass of 2.6 kg, and the bottom block's mass is 4.0 kg. If a ...

Physics

Two blocks (M1 = 2.57 kg and M2 = 6.71 kg) are in contact on a frictionless, horizontal tabletop. An external force, $\vec{F}$, is applied to block 1, and the two blocks are moving with a constant acceleration of 2.59 m/s2. What is the contact force between the blocks? What is...

Physics. PLEASE HELP!

two blocks of masses m1 and m2 (m1>m2) are placed on a frictionless table in contact with each other. A horizontal force of magnitude F is applied to the block of mass m1. if P is the magnitude of the contact force between the blocks, what are the net forces acting on m1 ...

Physics. Really stuck!

two blocks of masses m1 and m2 (m1>m2) are placed on a frictionless table in contact with each other. A horizontal force of magnitude F is applied to the block of mass m1. if P is the magnitude of the contact force between the blocks, what are the net forces acting on m1 ...

Physics

Two cubic blocks are in contact, resting on a frictionless horizontal surface. The block on the left has a mass of mL = 6.70 kg, and the block on the right has a mass of mR = 18.4 kg. A force of magnitude 112 N is applied to the left face of the left block, toward the right ...

physics

Two cubic blocks are in contact, resting on a frictionless horizontal surface. The block on the left has a mass of mL = 6.70 kg, and the block on the right has a mass of mR = 18.4 kg. A force of magnitude 112 N is applied to the left face of the left block, toward the right ...

Physics

Block A has a mass of 4.11 kg and block B has a mass of 5.1 kg. The blocks are connected by a string of negligible mass and are free to slide on a horizontal, frictionless surface. A force vectorA=(11.1 N)i is applied to block A and a force vectorB=(24.6 N)i is applied to ...

college physics

Three blocks of mass 1kg,2kg and 3kg move on a frictionless surface and a horizontal force 46 N acts on the 3kg block.1kg and 2kg blocks are in contact with each other while 1kg and 3kg blocks are connected by a chord. (a) Determine the acceleration of the system (b) Determine...

Physics.

A block of mass 3m is placed on a frictionless horizontal surface, and a second block of mass m is placed on top of the first block. The surfaces of the blocks are rough. A constant force of magnitude F is applied to the first block. a) Identify the horizontal force that ...

Physics

I got two questions Three blocks on a fricitonless horizontal surface are in contact with each other a force F is applied to block 1 mass m1 Draw a free body diagram for each block ok done the accelration of the system (in terms of m1, m2, and m3) ok done I got a = (m1 + m2 + ...

Physics

two blocks (a and b) are in contact on a horizontal frictionless surface. a 60N constant horizontal force is applied to A. the mass of a is 3.0 kg and the mass of b is 15 kg. what is the magnitude of the force of a on b

Physics

Two blocks, (Mass of block 1 = 2.3kg, Mass of block 2 = 1.2kg), are in contact on a frictionless table. If a horizontal force of 3.2N is applied to the larger block, what is the acceleration of the smaller block. Describe all external forces that are acting on the two blocks

Physics

Two blocks, (Mass of block 1 = 2.3kg, Mass of block 2 = 1.2kg), are in contact on a frictionless table. If a horizontal force of 3.2N is applied to the larger block, what is the acceleration of the smaller block. Describe all external forces that are acting on the two blocks

physics

A block of mass 4.0 kg is put on top of a block of mass M = 6.0 kg. To cause the top block to slip on the bottom one, while the bottom one is held fixed, a horizontal force of at least 19 N must be applied to the top block. The assembly of blocks is now placed on a horizontal...

Physics

Three blocks rest on a frictionless, horizontal table (see figure below), with m1 = 8 kg and m3 = 20 kg. A horizontal force F = 101 N is applied to block 1, and the acceleration of all three blocks is found to be 3.5 m/s2. Find m2. What is the normal force between blocks 2 and 3?

Physics

A 60 kg block slides along the top of a 100 kg block with an acceleration of 3.0 m/s2 when a horizontal force F of 320 N is applied. The 100 kg block sits on a horizontal frictionless surface, but there is friction between the two blocks. (a) Find the coefficient of kinetic ...

physics

Two blocks connected by a string are pulled across a rough horizontal surface by a force applied to one of the blocks, as shown. The acceleration of gravity is 9.8 m/s Block 1 has a mass of 5 kg while block two has a mass of 8 kg. A string is tied to the 8 kg block pulling up ...

Physic

Two blocks, m1 = 4 kg and m2 = 2 kg, are in contact with each other and are on a horizontal surface for which the coefficient of kinetic friction is 0.1. A 34 N horizontal force acts on block 1, making both blocks move in the direction of block 2. 34N --> (m1)(m2) --> ...

Physics

The figure is just mass A on top of mass B. There are no forces or anything shown. Block A, of mass 3.2 kg, is on block B, of mass 7 kg, as shown in the above figure. The lower block is on a frictionless surface while the coefficient of static friction is 0.25 between the two ...

Physics

Three blocks rest on a frictionless, horizontal table, with m1 = 9 kg and m3 = 16 kg. A horizontal force F = 104 N is applied to block 1, and the acceleration of all three blocks is found to be 3.3 m/s2. 1) Find m2 2)What is the normal force between 2 and 3?

Physics

A 60 kg block slides along the top of a 100 kg block.  The lighter block has an acceleration of 3.7 m/s2 when a horizontal force F= 350 N is applied.  Assuming there is no friction between the bottom 100 kg block and the horizontal frictionless surface but there is friction ...

Physics

A 2kg mass, m1 and a 10 kg mass, m2 are in contact on a horizontal frictionless surface. a constant horizontal force 13.7 N in the positive X direction is applied to m1 and a constant horizontal force 10.7 N in the negative X direction is applied to m2. the masses stay in ...

physics

Three blocks are in contact with each other on a frictionless, horizontal surface, as shown below. A horizontal force is applied to m1. Take m1 = 2.00 kg, m2 = 3.00 kg, m3 = 5.00 kg, and F = 22.0 N Find the acceleration of the blocks _______m/s2 (to the right) (c) Find the ...

physics

A 4.0 kg block is put on top of a 5.0 kg block. To cause the top block to slip on the bottom one while the bottom one is held fixed, a horizontal force of at least 16 N must be applied to the top block. The assembly of blocks is now placed on a horizontal, frictionless table...

Physics

Three blocks of mass 10kg, 20kg, 15kg respectively are being pushed in a row on along a horizontal surface with constant velocity by a force applied to the 10kg block.The coefficient of kinetic friction between each of the blocks and the surface is 0.18. What is the magnitude ...

urgent physics ?

I have drawn my force body diagrams, but I need help making forming the equation for this problem. Any assistance is greatly appreciated! A 60 kg block slides along the top of a 100 kg block. The lighter block has an acceleration of 3.8 m/s2 when a horizontal force F= 390 N is...

Physics

Two blocks are in contact on a frictionless table. A horizontal force F is applied to M2, as shown. If M1 = 1.06 kg, M2 = 3.80 kg, and F = 4.85 N, find the size of the contact force between the two blocks. If instead an equal but oppositely directed force is applied to M1 ...

Physics

Two blocks are in contact on a frictionless table. A horizontal force F is applied to M2, as shown. If M1 = 1.06 kg, M2 = 3.80 kg, and F = 4.85 N, find the size of the contact force between the two blocks. If instead an equal but oppositely directed force is applied to M1 ...

Physics

Two blocks are in contact on a frictionless table. A horizontal force F is applied to M2, as shown. If M1 = 1.06 kg, M2 = 3.80 kg, and F = 4.85 N, find the size of the contact force between the two blocks. If instead an equal but oppositely directed force is applied to M1 ...

Physics

Two blocks are in contact on a frictionless table. A horizontal force F is applied to M2, as shown. If M1 = 1.06 kg, M2 = 3.80 kg, and F = 4.85 N, find the size of the contact force between the two blocks. If instead an equal but oppositely directed force is applied to M1 ...

Physics

Two blocks are in contact on a frictionless table. A horizontal force F is applied to M2, as shown. If M1 = 1.06 kg, M2 = 3.80 kg, and F = 4.85 N, find the size of the contact force between the two blocks. If instead an equal but oppositely directed force is applied to M1 ...

Physics

Two blocks are in contact on a frictionless table. A horizontal force F is applied to M2, as shown. If M1 = 1.06 kg, M2 = 3.80 kg, and F = 4.85 N, find the size of the contact force between the two blocks. If instead an equal but oppositely directed force is applied to M1 ...

Physics

Three identical blocks, A, B, and C, are on a horizontal frictionless table. The blocks are connected by strings of negligible mass, with block B between the other two blocks. If block C is pulled horizontally by a force of magnitude F = 28 N, find the tension in the string ...

Physics

A 60 kg block slides along the top of a 100 kg block with an acceleration of 4.0 m/s2 when a horizontal force F of 325 N is applied. The 100 kg block sits on a horizontal frictionless surface, but there is friction between the two blocks.

physics

A block of mass M = 6.755 kg is pulled along a horizontal frictionless surface by a rope of mass m = 0.592 kg, as shown in Fig. 5-63. A horizontal force = 41.5 N is applied to one end of the rope. Assume that the rope only sags a negligible amount. Find (a) the acceleration of...

PHYSICS

The drawing shows a large cube (mass = 34 kg) being accelerated across a horizontal frictionless surface by a horizontal force P. A small cube (mass = 3.3 kg) is in contact with the front surface of the large cube and will slide downward unless P is sufficiently large. The ...

physics

A force of 8.7 N is applied to a steel block initally at rest on a horizontal frictionless surface. The force, which is directed at an angle of 30.0o below the horizontal, gives the block a horizontal acceleration of 5.3 m/s2. a) Draw a free body diagram and sum forces. b) ...

Physic

Block A of mass 2.2 kg is on block B of mass 5.2 kg as shown in the above figure. The lower block is on a frictionless surface while the coefficient of static friction is 0.3 between the two blocks. a) If they are moving at constant velocity, what is the frictional force ...

Physics-Mechaincs

A force of 23.52 N pushes and pulls to blocks as shown in the figure below. The vertical contact surfaces between the two blocks are frictionless. The contact between the blocks and the horizontal surface has a coefficient of friction of 0.29. The acceleration of gravity is 9....

physics

Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . (Figure 1) The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . Part A What is ...

Physics

A block of mass 3m is placed on a frictionless horizontal surface, and a second block of mass m is placed on top of the first block. The surfaces of the blocks are rough. A constant force of magnitude F is applied to the first block. Assume that the upper block does not slip ...

physics

A light rope is attached to a block with a mass of 6 kg that rests on a horizontal, frictionless surface. THe horizontal rope passes over a frictionless, massless pulley, and a block of mass m is suspended from the other end. When the blocks are released, the tension in the ...

physics

Two blocks, joined by a string, have masses of 6 and 9kg. They rest on frictionless horizontal surface. A 2nd string, attached only to the 9kg block, has a horizontal force = 30N applied to it. Both blocks accelerate. Find the tension in the string between the blocks.

Physics

2 blocks are in contact on a horizontal table. A force is applied on the first block at a 30* angle. The blocks move to the right side. If m1 = 2kg and m2 = 1kg and F = 6 N kinetic friction at the middle of the 2 blocks and the table = 0.250 Find the "contact force" between ...

Physics2

2 blocks are in contact on a horizontal table. A force is applied on the first block at a 30* angle. The blocks move to the right side. If m1 = 2kg and m2 = 1kg and F = 6 N kinetic friction at the middle of the 2 blocks and the table = 0.250 Find the "contact force" between ...

Physics

Two blocks connected by a string are pulled across a rough horizontal surface by a force applied to one of the blocks, as shown. The acceleration of gravity is 9.8 m/s2 . If each block has an acceleration of 5.2 m/s2 to the right, what is the magnitude of the applied force? ...

physics

One block rests upon a horizontal surface. A second identical block rests upon the first one. The coefficient of static friction between the blocks is the same as the coefficient of static friction between the lower block and the horizontal surface. A horizontal force is ...

Physics

A 5.00-kg block is placed on top of a 12.0-kg block that rests on a frictionless table. The coefficient of static friction between the two blocks is 0.650. What is the maximum horizontal force that can be applied before the 5.00-kg block begins to slip relative to the 12.0-kg ...

college physics

Two blocks with masses m and M are pushed along a horizontal frictionless furface by a horizontal applied force. The magnitude of the force either of these blocks has on the other is: M being a bigger mass than m of course. I think the answer is: mF/(M-m) or maybe MF/(M+m) but...

physics

A 4.85-kg block is placed on top of a 12.0-kg block that rests on a frictionless table. The coefficient of static friction between the two blocks is 0.645. What is the maximum horizontal force that can be applied before the 4.85-kg block begins to slip relative to the 12.0-kg ...

Physics

A 4 kg block resting on a horizontal surface is attached to an 8 kg block that hangs freely by a cord passing over a frictionless pulley. The coefficient of kinetic friction between the block and the horizontal surface is 0.4. Find the acceleration of the blocks and the ...

Physics

Two steel blocks are at rest on a frictionless horizontal surface. Block X has a mas of 3.0 kg ans is attacthed by means of a light taut string to block Y that has a mass of 12 kg. A force of 45 N (E) is applied to block x. Calculate the force block Y exerts on block x. I don'...

physics

The two blocks in the sketch are connected by a light cord over a frictionless pulley and are initially held in place. The block m1 has a mass of 2,00 kg and m2 has a mass of 3,00 kg. The inclined plane is frictionless and the coefficient of kinetic friction between block m1 ...

physics

A light rope is attached to a block with a mass of 6 kg that rests on a horizontal, frictionless surface. THe horizontal rope passes over a frictionless, massless pulley, and a block of mass m is suspended from the other end. When the blocks are released, the tension in the ...

Physics

1. The figure shows a 100-kg block being released from rest from a height of 1.0 m. It then takes 0.53 s for it to reach the floor. What is the mass m of the block on the left? There is no friction or mass in the pulley, and the connecting rope is very light. A) 16 kg B) 14 kg...

physics

A 3.0-kg block is on a frictionless horizontal surface. The block is at rest when, at t = 0, a force (magnitude P = 2.0 N) acting at an angle of 22° above the horizontal is applied to the block. At what rate is the force P doing work at t = 2.0 s? A. 2.3 W B. 2.0 W C. 1.4 W D...

Physics

A force of 9.4N pulls horizontally on a 1.2-kg block that slides on a rough, horizontal surface. This block is connected by a horizontal string to a second block of mass m2 = 2.00kg on the same surface. The coefficient of kinetic friction is μk = 0.25 for both blocks. ...

physics

A 3.24 kg block located on a horizontal frictionless floor is pulled by a cord that exerts a force F=11.8N at an angle theta=23.0degrees above the horizontal, as shown. What is the magnitude of the acceleration of the block when the force is applied? b.) What is the horizontal...

physics

Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over (you guessed it) a frictionless, massless pulley...

physics

Block A (Mass = 5.195 kg) and Block B (Mass = 3.330 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over (you guessed it) a frictionless, massless pulley...

Physics

Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over (you guessed it) a frictionless, massless pulley...

Physics

Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over (you guessed it) a frictionless, massless pulley...

Physics

Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over (you guessed it) a frictionless, massless pulley...

Physics

Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over (you guessed it) a frictionless, massless pulley...

Physics

A 6.99-kg block is placed on top of a 12.9-kg block that rests on a frictionless table. The coefficient of static friction between the two blocks is 0.565. What is the maximum horizontal force that can be applied before the 6.99-kg block begins to slip relative to the 12.9-kg ...

physics

Question Part Points Submissions Used 1 2 –/1 –/2 0/3 0/3 Total –/3 A force of 12.8 N pulls horizontally on a 0.9 kg block that slides on a rough, horizontal surface. This block is connected by a horizontal string to a second block of mass m2 = 2.04 kg on the same ...

Physics

The two blocks (m = 13 kg and M = 89 kg) are not attached to each other. The coefficient of static friction between the blocks is μs = 0.50, but the surface beneath the larger block is frictionless. What is the minimum magnitude of the horizontal force (F) required to ...

Physics

1. The figure shows a 100-kg block being released from rest from a height of 1.0 m. It then takes 0.53 s for it to reach the floor. What is the mass m of the block on the left? There is no friction or mass in the pulley, and the connecting rope is very light. A) 16 kg B) 14 kg...

College physics (simple)

Two blocks (one on top of the other), each of mass m = 2.4 kg, are pushed along the horizontal surface of a table by a horizontal force P of magnitude 6.8 N, directed to the right. The blocks move together to the right at constant velocity. (a) Find the frictional force ...

College physics (simple)

Two blocks (one on top of the other), each of mass m = 2.4 kg, are pushed along the horizontal surface of a table by a horizontal force P of magnitude 6.8 N, directed to the right. The blocks move together to the right at constant velocity. (a) Find the frictional force ...

Physics

A block of mass m = 2.00 kg rests on the left edge of a block of mass M = 8.00 kg. The coefficient of kinetic friction between the two blocks is 0.300, and the surface on which the 8.00- kg block rests is frictionless. A constant horizontal force of magnitude F = 10.0 N is ...

PHYSICS

A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by a constant force of 125 N applied at an angle θ above the horizontal. The coefficient of kinetic friction between the block and the horizontal surface is 0.150. At what angle θ above the ...

physics

A 3.24 kg block located on a horizontal frictionless floor is pulled by a cord that exerts a force F=11.8N at an angle theta=23.0degrees above the horizontal, as shown. What is the magnitude of the acceleration of the block when the force is applied?

Physics

The mass of the heavier block is 22 kg and the mass of the lighter blocks is 11 kg and the magnitude of the force of the connecting string on the smaller block is 13 N. Assume: g = 9.8 m/s 2 and the horizontal surface on which the objects slide is frictionless. Determine the ...

Physics

Ok I guess the reason why I do not know how to do this problem is because I can not draw the proper free-body diagram... Three blocks on a frictionless horizontal surface are in contact with each other as shown in Fig. 4-5. A force F is applied to block 1 (mass m1). (a) Draw a...

physics

A light rope is attached to a block with a mass of 10 kg that rests on a horizontal, frictionless surface, and a block of mass, m, is suspended from the other end. The tension in the rope is 20 N when the blocks are released. a) What is the acceleration of the 10 kg block? b) ...

math

Two blocks sit on a horizontal surface. They are connected to each other by a massless cord. The block on the left has a mass of 5.1 kg and the block on the right has a mass of 3.0 kg. Another massless cord is attached to the block on the right and pulls that block with a ...

Physics

Two blocks sit on a horizontal surface. They are connected to each other by a massless cord. The block on the left has a mass of 4.8 kg and the block on the right has a mass of 2.2 kg. Another massless cord is attached to the block on the right and pulls that block with a ...

physics

Three blocks, with masses m1 = 5.90 kg, m2 = 5.50 kg, and m3 = 7.10 kg, are pull on a horizontal frictionless surface by a 18.00 N force that makes a 39 o angle (θ) with the horizontal. What is the magnitude of the tension between the m2 and m3 blocks?

physics

The horizontal surface on which the block of mass 5.2 kg slides is frictionless. The force of 64 N acts on the block in a horizontal direction and the force of 128 N acts on the block at an angle as shown below. 5.2 kg 128 N 60 ◦ 64 N What is the magnitude of the ...

mechanics

Q2. A block of massmrests on the left edge of a block of larger massM. The coefficient of kinetic friction between the two blocks is , and the surface on which the larger block rests is frictionless. A constant horizontal force of magnitude F is applied to the block of mass m...

physics

The mass of the heavier block is 28 kg and the mass of the lighter blocks is 14 kg and the magnitude of the force of the connecting string on the smaller block is 24 N. Assume: g = 9.8 m/s^2 and the horizontal surface on which the objects slide is frictionless. Determine the ...

Mechanics

A 30.0-kg block is resting on a flat horizontal table. On top of this block is resting a 15.0-kg block, to which a horizontal spring is attached, as the drawing illustrates. The spring constant of the spring is 325 N/m. The coefficient of kinetic friction between the lower ...

Pages

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
  26. 26
  27. 27
  28. 28
  29. 29
  30. 30
  31. 31
  32. 32
  33. 33
  34. 34
  35. 35
  36. 36
  37. 37
  38. 38
  39. 39
  40. 40
  41. 41
  42. 42
  43. 43
  44. 44
  45. 45
  46. 46
  47. 47
  48. 48
  49. 49
  50. 50
  51. 51
  52. 52
  53. 53
  54. 54
  55. 55
  56. 56
  57. 57
  58. 58
  59. 59
  60. 60
  61. 61
  62. 62
  63. 63
  64. 64
  65. 65
  66. 66
  67. 67
  68. 68
  69. 69
  70. 70
  71. 71
  72. 72
  73. 73
  74. 74
  75. 75
  76. 76
  77. 77
  78. 78
  79. 79
  80. 80
  81. 81
  82. 82
  83. 83
  84. 84
  85. 85
  86. 86
  87. 87
  88. 88
  89. 89
  90. 90
  91. 91
  92. 92
  93. 93
  94. 94
  95. 95
  96. 96
  97. 97
  98. 98
  99. 99
  100. 100