Math sin/cos

141,764 results

TRIG!

Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1 - (3/4)sin^2 2x work on one side only! Responses Trig please help! - Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 x = (sin^2x)^3 + (cos^2x)^3 = (sin^2x+cos...

tigonometry

expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by -b and using that cos(-b)= cos(b) sin(-b)= -sin(b) gives: sin(a-b) = sin(a)cos(b) - cos(a)sin(b) Add the two equations: sin(a+b) + sin(a-b) = ...

Mathematics - Trigonometric Identities

Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y)(sin^2y) / (sin^...

algebra

Can someone please help me do this problem? That would be great! Simplify the expression: sin theta + cos theta * cot theta I'll use A for theta. Cot A = sin A / cos A Therefore: sin A + (cos A * sin A / cos A) = sin A + sin A = 2 sin A I hope this will help. in my algebra ...

trig

Reduce the following to the sine or cosine of one angle: (i) sin145*cos75 - cos145*sin75 (ii) cos35*cos15 - sin35*sin15 Use the formulae: sin(a+b)= sin(a) cos(b) + cos(a)sin(b) and cos(a+b)= cos(a)cos(b) - sin(a)sin)(b) (1)The quantity = sin(145-75) = sin 70 = cos 20 note that...

math

Can you please check my work. A particle is moving with the given data. Find the position of the particle. a(t) = cos(t) + sin(t) s(0) = 2 v(0) = 6 a(t) = cos(t) + sin(t) v(t) = sin(t) - cos(t) + C s(t) = -cos(t) - sin(t) + Cx + D 6 = v(0) = sin(0) -cos(0) + C C=7 2= s(0) = -...

Math

Show that for real x that {[cos x + 2 sin x + 1]/[cos x + sin x] } cannot have a value between 1 and 2. Let y = [(cos x+2 sin x + 1)/(cos x + sin x) ] y(cos x + sin x) = (cos x + 2 sin x + 1) sin x(y-2) + cos x(y-1)=1 , I just feel that this isn't the way to do this.. Any ...

math

Prove that for all real values of a, b, t (theta): (a * cos t + b * sin t)^2 <= a^2 + b^2 I will be happy to critique your work. Start on the left, square it, (a * cos t + b * sin t)^2 = a^2 (1 - sin^2t) + 2ab sin t cost+ b^2 (1 - cos^2 t)= a^2 + b^2 - (a sin t - b cos t)^2...

Trig

Find sin(s+t) and (s-t) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(-1/5)Sin(3/5) = 0.389418 Sin(s-t) =sin(s)cos(t) - cos(s)sin(t) =sin(-3/5)cos(1/5) - cos(1/5)sin(3/5) =Sin-3/5 cos-3/5 = -0.46602 HELP ...

Trig

Given: cos u = 3/5; 0 < u < pi/2 cos v = 5/13; 3pi/2 < v < 2pi Find: sin (v + u) cos (v - u) tan (v + u) First compute or list the cosine and sine of both u and v. Then use the combination rules sin (v + u) = sin u cos v + cos v sin u. cos (v - u) = cos u cos v + ...

pre-cal

Simplify the given expression........? (2sin2x)(cos6x) sin 2x and cos 6x can be expressed as a series of terms that involve sin x or cos x only, but the end result is not a simplification. sin 2x = 2 sinx cosx cos 6x = 32 cos^6 x -48 cos^4 x + 18 cos^2 x - 1 I assume you are ...

math

Given that sin x + sin y = a and cos x + cos y =a, where a not equal to 0, express sin x + cos x in terms of a. attemp: sin x = a - sin y cos x = a - cos y sin x + cos x = 2A - (sin y + cos y)

Calculus 12th grade (double check my work please)

1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.-2 sin 2x B.-2 sin 2x / sinh 3y C.-2/3tan (2x/3y) D.-2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with respect to x. A.-sin (2x) B.-2x sin (x^2...

Precal

I do not understand how to do this problem ((sin^3 A + cos^3 A)/(sin A + cos A) ) = 1 - sin A cos A note that all the trig terms are closed right after there A's example sin A cos A = sin (A) cos (A) I wrote it out like this 0 = - sin^6 A - cos^6 A + 2sin^3 A cos^3 A - 2sin^3 ...

trig

The expression 4 sin x cos x is equivalent to which of the following? (Note: sin (x+y) = sin x cos y + cos x sin y) F. 2 sin 2x G. 2 cos 2x H. 2 sin 4x J. 8 sin 2x K. 8 cos 2x Can someone please explain how to do this problem to me?

Calc.

Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x) (dy/dx)-(dx/du)= [(cos^x(x))(ln(cos(x)))-(x sin(x)cos^(x-1...

calculus

Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x) (dy/dx)-(dx/du)= [(cos^x(x))(ln(cos(x)))-(x sin(x)cos^(x-1...

Trigonometry

Solve the equation for solutions in the interval 0<=theta<2pi Problem 1. 3cot^2-4csc=1 My attempt: 3(cos^2/sin^2)-4/sin=1 3(cos^2/sin^2) - 4sin/sin^2 = 1 3cos^2 -4sin =sin^2 3cos^2-(1-cos^2) =4sin 4cos^2 -1 =4sin Cos^2 - sin=1/4 (1-sin^2) - sin =1/4 -Sin^2 - sin =-3/4 ...

Math

Solve this equation algebraically: (1-sin x)/cos x = cos x/(1+sin x) --- I know the answer is an identity, and when graphed, it looks like cot x. I just don't know how to get there. I tried multiplying each side by its conjugate, but I still feel stuck. This is what I have so ...

math

how would you prove that sin^2(a)-cos^2(b)= sin^2(b)-cos^2(a). i'm not completely sure that this is right but i used the difference of two squares on it to get (sin(a)+cos(b))(sin(a)-cos(b)) then after that i am stuck. please help

trig

it says to verify the following identity, working only on one side: cotx+tanx=cscx*secx Work the left side. cot x + tan x = cos x/sin x + sin x/cos x = (cos^2 x +sin^2x)/(sin x cos x) = 1/(sin x cos x) = 1/sin x * 1/cos x You're almost there. thanks so much! i could not figure...

Math(Please check)

Use the fundamental identities to simplify the expression. tan^2 Q / sec^2 Q sin^2/cos^2 / 1/cos^2 = sin^2 / cos^2 times cos^2 / 1 = The cos^2 cancels out so sin^2 is left. Is this correct?

Math Help Please

What are the ratios for sin A and cos A? The diagram is not drawn to scale. Triangle Description- AB = 29 AC = 20 BC - 21 A. sin A = 20/29, cos A = 21/29 B. sin A = 21/29, cos A = 20/21 C. sin A = 21/29, cos A = 20/29****? D. sin A = 21/20, cos A = 20/21 Please help and explain!

Math

the original problem was: (sin x + cos x)^2 + (sin x - cos x)^2 = 2 steps too please I got 1 for (sin x + cos x)^2 but then what does (sin x - cos x)^2 become since it's minus?

math

Proving Trigonometric Identities 1. sec^2x + csc^2x= (sec^2 x)(csc^2 x) 2. sin ^3 x / sin x - cos 3x / cos x = 2 3. 1- cos x/ sin x= sin x/ 1+ cos x 4. 2 sin x cos ^2 (x/2)- 1/x sin (2x) = sinx 5. cos 2 x + sin x/ 1- sin x= 1+ 2 sin x

Math

Prove each identity: a) 1-cos^2x=tan^2xcos^2x b) cos^2x + 2sin^2x-1 = sin^2x I also tried a question on my own: tan^2x = (1 – cos^2x)/cos^2x R.S.= sin^2x/cos^2x I know that the Pythagorean for that is sin^2x + cos^2x That's all I could do.

Integral

That's the same as the integral of sin^2 x dx. Use integration by parts. Let sin x = u and sin x dx = dv v = -cos x du = cos x dx The integral is u v - integral of v du = -sinx cosx + integral of cos^2 dx which can be rewritten integral of sin^2 x = -sinx cos x + integral of (...

Math

State the restrictions on the variables for these trigonometric identities. a)(1 + 2 sin x cos x)/ (sin x + cos x) = sin x + cos x b) sin x /(1+ cos x) = csc x - cot x

Math (Linear Systems)

28 N + T2 sin 12 = T1 sin 42 T2 cos 12 = T1 cos 42 T2 sin 12 + T3 sin 54 = W2 T2 cos 12 = T3 cos 54 Im solving for T1,2,3 and W2 I just cant seem to get the system to work

Trigonometry

Does anyone have a good website that shows the proofs for these equations? sin(u+v) = sin(u)cos(v) + sin(v)cos(u) cos(u+v) = cos(u)cos(v) + sin(v)sin(u) Thanks!

Trigonometry

Please review and tell me if i did something wrong. Find the following functions correct to five decimal places: a. sin 22degrees 43' b. cos 44degrees 56' c. sin 49degrees 17' d. tan 11degrees 37' e. sin 79degrees 23'30' f. cot 19degrees 0' 25'' g. tan 64degrees 6' 45'' h. cos...

Math, Pre-Calc

the original problem was: Solve: sin(3x)-sin(x)=cos(2x) so far i've gooten to: sin(x)(2sin(x)cos(x)-1)=cos^2(x)-sin^2(x) Where would I go from here?

Geometry One multiple choice question!

Write the ratios for sin A and cos A. {picture is of a right triangle, ABC. segment AC is 8, segment AB is 17, and segment CB is 15.} sin A=15/17, cos A=8/17 sin A=15/8, cos A=8/17 sin A=15/17, cos A=8/15 sin A=8/17, cos A=15/17

Geometry Please Help With One Multiple Choice

Write the ratios for sin A and cos A. {picture is of a right triangle, ABC. segment AC is 8, segment AB is 17, and segment CB is 15.} sin A=15/17, cos A=8/17 sin A=15/8, cos A=8/17 sin A=15/17, cos A=8/15 sin A=8/17, cos A=15/17

MATH

Hi, I really need help with these questions. I did some of them halfway, but then I got stuck. Would you please help me? Thank you so much. Prove the identity.... 1. sec x + tan x(1-sin x/cos x)=1 1/cos x + sin x/cos x(cos^2 x/cos x)=1 1+sin x/cos x(cos^2x/cos x)=1 I got stuck...

Math

the original problem was: Solve: sin(3x)-sin(x)=cos(2x) so far i've gotten to: sin(x)(2sin(x)cos(x)-1)=cos^2(x)-sin^2(x) Where would I go from here?

Precalc

Let x, y, and z be real numbers such that cos(x) + cos(y) + cos(z) = sin(x) + sin(y) + sin(z) = 0. Prove that cos(2x) + cos(2y) + cos(2z) = sin(2x) + sin(2y) + sin(2z) = 0.

precalculus

For each of the following determine whether or not it is an identity and prove your result. a. cos(x)sec(x)-sin^2(x)=cos^2(x) b. tan(x+(pi/4))= (tan(x)+1)/(1-tan(x)) c. (cos(x+y))/(cos(x-y))= (1-tan(x)tan(y))/(1+tan(x)tan(y)) d. (tan(x)+sin(x))/(1+cos(x))=tan(x) e. (sin(x-y...

math

Eliminate the parameter (What does that mean?) and write a rectangular equation for (could it be [t^2 + 3][2t]?) x= t^2 + 3 y = 2t Without a calculator (how can I do that?), determine the exact value of each expression. cos(Sin^-1 1/2) Sin^-1 (sin 7pi/6) x= t^2 + 3 y = 2t ...

Math(Please help)

1)tan Q = -3/4 Find cosQ -3^2 + 4^2 = x^2 9+16 = sqrt 25 = 5 cos = ad/hy = -4/5 Am I correct? 2) Use the sum and difference identites sin[x + pi/4] + sin[x-pi/4] = -1 sinx cospi/4 + cosxsin pi/4 + sinx cos pi/4 - cosx sin pi/4 = -1 2 sin x cos pi/4 =-1 cos pi/4 = sqr2/2 2sin^x...

Trigonometry

I need help with I just can't seem to get anywhere. this is as far as I have got: Solve for b arcsin(b)+ 2arctan(b)=pi arcsin(b)=pi-2arctan(b) b=sin(pi-2arctan(b)) Sub in Sin difference identity let 2U=(2arctan(b)) sin(a-b)=sinacosb-cosasinb =(sin(pi))(cos(2U))-(cos(pi))(sin(...

Trig!

The identities cos(a-b)=cos(a)cos(b)sin(a)sin(b) and sin(a-b)=sin(a)cos(b)-cos(a)sin(b) are occasionally useful. Justify them. One method is to use rotation matricies. Another method is to use the established identities for cos(a+b) and sin (a+b).

Math

I need help solving for all solutions for this problem: cos 2x+ sin x= 0 I substituted cos 2x for cos^2x-sin^2x So it became cos^2(x)-sin^2(x) +sinx=0 Then i did 1-sin^2(x)-sin^2(x)+sinx=0 = 1-2sin^2(x)+sinx=0 = sinx(-2sinx+1)=-1 What did i do wrong?? the real solutions are ...

Trig

If angle A is 45 degrees and angle B is 60 degrees. Find sin(A)cos(B), find cos(A)sin(B), find sin(A)sin(B), and find cos(A)cos(B) The choises for the first are: A. 1/2[sin(105)+sin(345)] B. 1/2[sin(105)-sin(345)] C. 1/2[sin(345)+cos(105)] D. 1/2[sin(345)-cos(105)] You don't ...

Math - Calculus

The identity below is significant because it relates 3 different kinds of products: a cross product and a dot product of 2 vectors on the left side, and the product of 2 real numbers on the right side. Prove the identity below. | a × b |² + (a • b)² = |a|²|b|² My work, ...

Math - Solving Trig Equations

What am I doing wrong? Equation: sin2x = 2cos2x Answers: 90 and 270 .... My Work: 2sin(x)cos(x) = 2cos(2x) sin(x) cos(x) = cos(2x) sin(x) cos(x) = 2cos^2(x) - 1 cos(x) (+/-)\sqrt{1 - cos^2(x)} = 2cos^2(x) - 1 cos^2(x)(1 - cos^2(x)) = 4cos^4(x) - 4cos^2(x) + 1 5cos^4(x) - 5cos^...

Trig.

tan^2BeatacscBeta-tan^2 (simplify) (sin/cos)^2Beta times 1/sin-(sin/cos)^2 (sin^2/cos^2)-(sin^2/cos^2)=-sin/cos Is this correct?

math

find all solutions in the interval [0,2 pi) sin(x+(3.14/3) + sin(x- 3.14/3) =1 sin^4 x cos^2 x Since sin (a+b) = sina cosb + cosb sina and sin (a-b) = sina cosb - cosb sina, the first problem can be written 2 sin x cos (pi/3)= sin x The solution to sin x = 1 is x = pi/2 For ...

Math(Please help)

2) Use the sum and difference identites sin[x + pi/4] + sin[x-pi/4] = -1 sinx cospi/4 + cosxsin pi/4 + sinx cos pi/4 - cosx sin pi/4 = -1 2 sin x cos pi/4 =-1 cos pi/4 = sqr2/2 2sin^x(sqrt2/2) = -1 sin x = -sqrt2 x = 7pi/4 and 5pi/4 Am I correct?

precalc

prove the identity: cos^4 - sin^4 = cos^2 - sin^2 (cos^2 + sin^2)(cos^2 - sin^2) cos^2 + sin^2 = 1 cos^2 - sin^2 = cos^2 - sin^2 is this correct?

maths

Choose the option that gives an expression for the indefinite integral ʃ (cos(4x) + 2x^2)(sin(4x) − x) dx. In each option, c is an arbitrary constant. Options A cos(4x) + 2x^2 +c B -1/8cos(4x) + 2x^2)^2 +c C 1/4 (sin(4x) − x)^2 + c D (1/(2 (sin(4x) − x...

Pre-Calculus

I don't understand,please be clear! Prove that each equation is an identity. I tried to do the problems, but I am stuck. 1. cos^4 t-sin^4 t=1-2sin^2 t 2. 1/cos s= csc^2 s - csc s cot s 3. (cos x/ sec x -1)- (cos x/ tan^2x)=cot^2 x 4. sin^3 z cos^2 z= sin^3 z - sin^5 z

Precalculus with Trigonometry

Prove or disprove the following Identities: cos(-x) - sin(-x) = cos(x) + sin (x) sin raised to the 4 (theta) - cos raised to the 4 (theta) = sin squared (theta) - cos squared (theta) cos (x+(pi)/(6)) + sin (x - (pi)/(3)) = 0 cos(x+y)cos(x-y) = cos squared (x) - sin squared (y...

trigonometry (please double check this)

Solve the following trig equations. give all the positive values of the angle between 0 degrees and 360 degrees that will satisfy each. give any approximate value to the nearest minute only. 1. sin2Į = (sqrt 3)/2 2. sin^2Į = cos^2Į + 1/2 3. sin 2x - cosx = 0 4. cos 4x...

Trig

sin^4t-cos^4t/sin^2t cos^2t= sec^2t-csc^2t i have =(sin^2t+cos^2t)(sin^2t+cos^2t)/sin^2tcos^2t then do i go =(sin^2t+cos^2t)/sin^2tcos^2t stumped

add math

Given sin (x-y)=1/4, sin x cos y=3/5,and tan y=3/2,without using mathematical table or scientific calculator,find the values for: (a)cos x sin y (b)cos (x+y)

pre calc trig check my work please

sin x + cos x -------------- = ? sin x sin x cos x ----- + ----- = sin x sin x cos x/sin x = cot x this is what i got, the problem is we have a match the expression to the equation work sheet and this is not one of the answers. need to figure out what im doing wrong so i can ...

maths

Choose the two options which are true for all values of x 1) cos (x) = cos ( x – pie/2) 2) sin (x + pie/2) = cos (x – pie/2) 3) cos (x) = sin (x – pie/2) 4) sin (x) = sin (x + 4pie) 5) sin (x) = cos (x – pie/2) 6) sin^2 (x) + cos^2 (x) = pie would it be 1 and 3 ?? I ...

Pre-Calculus

Prove that each equation is an identity. I tried to do the problems, but I am stuck. 1. cos^4 t-sin^4 t=1-2sin^2 t 2. 1/cos s= csc^2 s - csc s cot s 3. (cos x/ sec x -1)- (cos x/ tan^2x)=cot^2 x 4. sin^3 z cos^2 z= sin^3 z - sin^5 z

Math

3. find the four angles that define the fourth root of z1=1+ sqrt3*i z = 2 * (1/2 + i * sqrt(3)/2) z = 2 * (cos(pi/3 + 2pi * k) + i * sin(pi/3 + 2pi * k)) z = 2 * (cos((pi/3) * (1 + 6k)) + i * sin((pi/3) * (1 + 6k))) z^(1/4) = 2^(1/4) * (cos((pi/12) * (1 + 6k)) + i * sin((pi/...

Math-Trigonometry

Show that if x, y, and z are consecutive terms of an arithmetic sequence, and tan y is defined, then (sin x + sin y + sin z) / (cos x + cos y + cos z) = tan y. So I tried letting x = y-k (since x,y,z are consecutive terms of an arithmetic sequence), then z= y+k So we get (sin(...

calculus

Find the points on the curve y= (cos x)/(2 + sin x) at which the tangent is horizontal. I am not sure, but would I find the derivative first: y'= [(2 + sin x)(-sin x) - (cos x)(cos x)]/(2 + sin x)^2 But then I don't know what to do or if that is even correct??? Would I ...

math

Express the following in simplest form: (complex fraction) Sin(x) - Cos(x) Cos(x) Sin(x) _______________ 1 - 1 Cos(x) Sin(x)

precalculus

I don't understand this problem: (Tanө + cos ө)/ (sec ө + cot ө) so I start off like this: ={(sinө / cos ө)+cosө}{cos ө + (sinө/cosө)} =[(sin ө +cos^2ө) (cos^2ө +sin ө)]/ cos ө but what ...

math

A trigonmetric polynomial of order n is t(x) = c0 + c1 * cos x + c2 * cos 2x + ... + cn * cos nx + d1 * sin x + d2 * sin 2x + ... + dn * sin nx The output vector space of such a function has the vector basis: { 1, cos x, cos 2x, ..., cos nx, sin x, sin 2x, ..., sin nx } Use ...

verifying trigonometric identities

How do I do these problems? Verify the identity. a= alpha, b=beta, t= theta 1. (1 + sin a) (1 - sin a)= cos^2a 2. cos^2b - sin^2b = 2cos^2b - 1 3. sin^2a - sin^4a = cos^2a - cos^4a 4. (csc^2 t / cot t) = csc t sec t 5. (cot^2 t / csc t) = csc t = sin t

trigonometry HELP pleasE!

these must be written as a single trig expression, in the form sin ax or cos bx. a)2 sin 4x cos4x b)2 cos^2 3x-1 c)1-2 sin^2 4x I need to learn this!! if you can show me the steps and solve it so I can learn I'd be grateful!!! 1) apply the formula for sin 2z 2)3) cos^2z + sin^...

Mathematics - Trigonometric Identities

Prove: sin^2x - sin^4x = cos^2x - cos^4x What I have, LS = (sinx - sin^2x) (sinx + sin^2x) = (sinx - 1 -cos^2x) (sinx + 1 - cos^2x) = sin^2x + sinx - sinx - cos^2xsinx - cos^2xsinx - 1 - 1 + cos^4x = sin^2x - 2cos^2xsinx - 2 + cos^4x Where did I go wrong? Can anyone please ...

trigonometry

find without tables or calculator. (1) sin^2 (22 1/2)- cos^2 (22 1/2) (2) sin 60 cos 30 + sin 30 cos 60 (3) cos(90-y) = sin 56degree 47^i

Maths

Cos^4(θ)/cos^2(α) + sin^4(θ)/ sin^2(α)=1 Prove that cos^4 alpha/cos^ thetha + sin^4alpha/ sin^2thetha= 1

Math (trigonometric identities)

I was given 21 questions for homework and I can't get the last few no matter how hard and how many times I try. 17. Sinx-1/sinx+1 = -cos^2x/(sinx+1)^2 18. Sin^4x + 2sin^2xcos^2x + cos^4x = 1 19. 4/cos^2x - 5 = 4tan^2x - 1 20. Cosx - sinx - cos^3x/Cosx = sin^2 - tanx 21. Sin^2x...

Trigonometry

I need to prove that the following is true. Thanks. csc^2(A/2)=2secA/secA-1 Right Side=(2/cosA)/(1/cosA - 1) = (2/cosA)/[(1-cosA)/cosA] =2/cosA x (cosA)/(1-cosA) =2/(1-cosA) now recall cos 2X = cos^2 X - sin^2 X and we could say cos A = cos^2 A/2 - sin^2 A/2 and of course sin^...

Mathematics - Trigonometric Identities - Reiny

Mathematics - Trigonometric Identities - Reiny, Friday, November 9, 2007 at 10:30pm (sinx - 1 -cos^2x) (sinx + 1 - cos^2x) should have been (sinx - 1 + cos^2x) (sinx + 1 - cos^2x) and then the next line should be sin^2x + sinx - cos^2xsinx - sinx - 1 + cos^2 x + cos^2xsinx - ...

Math

Show using integration by parts that: e^3x sin(2x)dx = 4/26 e^3x (3/2 sin(2x) - cos(2x)) +c Bit stuck on this. Using rule f udv = uv - f vdu u = e^3x dv + sin(2x)dx f dv = v du/dx = 3e^3x v = -1/2 cos(2x) so uv - f vdu: = (e^3x)(-1/2 cos(2x)) - (-1/2 cos(2x))(3e^3x) Don't know...

math

Determine exact value of cos(cos^-1(19 pi)). is this the cos (a+b)= cos a cos b- sina sin b? or is it something different. When plugging it in the calculator, do we enter it with cos and then the (cos^-1(19 pi)).

MATH...THE GRAPHS OF SINE, COSINE AND TANGENT

anyone explain how this cos 2A cos A – sin 2A sin A can become to this cos (2A + A) = cos 3A

calculus

Find complete length of curve r=a sin^3(theta/3). I have gone thus- (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int Sqrt[sin^4(t/3){(sin^2(t/3)+cos^2(t/3)}]dt=a Int Sqrt[sin^4(t/3)dt =a ...

Math

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve. x = sec Q y = cos Q x^2 + y^2 = 1/cos^2 + sin^2/cos^2 = x^2(1 +sin^2) = x^2(2-cos^2) x^2(2-1/x^2) = 2x^2 - 1 x^2 - y^2 = 1 My teacher said to use secant*cosine = 1. ...

math

How would you establish this identity: (1+sec(beta))/(sec(beta))=(sin^2(beta))/(1-cos(beta)) on the right, sin^2 = 1-cos^2, that factor to 1-cos * `1+cos, then the denominator makes the entire right side 1+cosB which is 1+1/sec which is 1/sec (sec+1) qed using sec(beta) = 1/...

Trig Help!

Question: Trying to find cos π/12, if cos π/6 = square root 3 over 2, how to find cos π/12 using DOUBLE angle formula? This is what I got so far.. cos 2(π/6) = cos (π/6 + π/6) = (cos π/6)(cos π/6) - (sin π/6)(sin π/6) = cos^2...

Limit Calculas

Evaluate lim->4 sin(2y)/tan(5y) Here is what I have so far. I am not sure the next steps. Can someone help me? 1. sin(2y)/(sin(5y)*cos(5y)) 2. (sin(2y)*cos(5y))/sin(5y)

calculus

Evaluate lim->4 sin(2y)/tan(5y) Here is what I have so far. I am not sure the next steps. Can someone help me? 1. sin(2y)/(sin(5y)*cos(5y)) 2. (sin(2y)*cos(5y))/sin(5y)

Pre-Calc

How do I solve this? My work has led me to a dead end. tan(45-x) + cot(45-x) =4 my work: (tan45 - tanx)/(1+ tan45tanx) + (cot45 - cotx)/(1 + cot45cotx) = 4 (1-tanx)/(1+tanx) + (1-cotx)/(1+cotx) = 4 Then I found a common denominator, giving me this: (2-2cotxtanx)/(1+cotx+tanx+...

math

Use the exact values of the sin, cos and tan of pi/3 and pi/6, and the symmetry of the graphs of sin, cos and tan, to find the exact values of si -pi/6, cos 5/3pi and tan 4pi/3. I have found the answers to the first three using the special tables sin(ƒÎ/6) = cos(ƒÎ/3) = 1/...

math

Use the exact values of the sin, cos and tan of pi/3 and pi/6, and the symmetry of the graphs of sin, cos and tan, to find the exact values of sin -pi/6, cos 5/3pi and tan 4pi/3. I have found the answers to the first three using the special tables sin pi/6 = cos pi/3 = 1/2 cos...

Math

verify the following identity used in calculus: cos(x+h)-cos(x)/h=cos(x)[cos(h)-1/h]-sin(x)[sin(h)/h]

Trig

Solve in terms of sine and cosine: sec(x) csc(x)- sec(x) sin(x) so far I have: 1/cos(x) 1/sin(x) - 1/cos(x) sin(x) I am not sure where to go to from there. The book says the answer is cot(x) or cos(x)/sin(x) Thank you in advance.

Trigonometry desperate help, clueless girl here

2. solve cos 2x-3sin x cos 2x=0 for the principal values to two decimal places. 3. solve tan^2 + tan x-1= 0 for the principal values to two decimal places. 4. Prove that tan^2(x) -1 + cos^2(x) = tan^2(x) sin^2 (x). 5.Prove that tan(x) sin(x) + cos(x)= sec(x) 6.Prove that tan(x...

Trigonometry

1.Solve tan^2x + tan x – 1 = 0 for the principal value(s) to two decimal places. 6.Prove that tan y cos^2 y + sin^2y/sin y = cos y + sin y 10.Prove that 1+tanθ/1-tanθ = sec^2θ+2tanθ/1-tan^2θ 17.Prove that sin^2w-cos^2w/tan w sin w + cos w tan w = ...

Math, derivatives

Let g(x) = sin (cos x^3) Find g ' (x): The choices are a) -3x^2sinx^3cos(cos x^3) b) -3x^2sinx^3sin(cos x^3) c) -3x^2cosx^3sin(cos x^3) d) 3x^2sin^2(cos x^3) I'm not exactly sure where I should start. Should I begin with d/dx of sin? Or do the inside derivative first...and do ...

Calculus

Integrate 1/sinx dx using the identity sinx=2(sin(x/2)cos(x/2)). I rewrote the integral to 1/2 ∫ 1/(sin(x/2)cos(x/2))dx, but I don't know how to continue. Thanks for the help. Calculus - Steve, Tuesday, January 12, 2016 at 12:45am 1/2 ∫ 1/(sin(x/2)cos(x/2))dx let u...

Math - Solving for Trig Equations

Solve the following equation for 0 less than and/or equal to "x" less than and/or equal to 360 -- cos^2x - 1 = sin^2x -- Attempt: cos^2x - 1 - sin^2x = 0 cos^2x - 1 - (1 - cos^2x) = 0 cos^2x - 1 - 1 + cos^2x = 0 2cos^2x - 2 = 0 (2cos^2x/2)= (-2/2) cos^2x = -1 cosx = square ...

Cos-Derivative

y= (cos^3 x) (cos 3x) I got -3 sin(3x) cos^3x - 3 sin(x) cos (3x) cos^2 (x) using the product rule Is this right? Thanks.

Pre Calculus

Use one of the identities cos(t + 2ðk) = cos t or sin(t + 2ðk) = sin t to evaluate each expression. (Enter your answers in exact form.) (a) sin(17ð/4) (b) sin(−17ð/4) (c) cos(17ð) (d) cos(45ð/4) (e) tan(−3ð/4) (f) cos(7ð/4) (g) sec(ð/6+2ð) (h) csc(2ð &#...

Pre Calculus

Use one of the identities cos(t + 2ðk) = cos t or sin(t + 2ðk) = sin t to evaluate each expression. (Enter your answers in exact form.) (a) sin(17ð/4) (b) sin(−17ð/4) (c) cos(17ð) (d) cos(45ð/4) (e) tan(−3ð/4) (f) cos(7ð/4) (g) sec(ð/6+2ð) (h) csc(2ð &#...

Math

Which of the following are inverse functions? 1. Arcsin x and sin x 2. cos^-1 x and cos x 3. csc x and sin x 4. e^x and ln x 5. x^2 and +/- sqrt x 6. x^3 and cubic root of x 7. cot x and tan x 8. sin x and cos x 9. log x/3 and 3^x I believe the answers are 2, 4, 6, and 9, but ...

Trig

Simplify sin x cos^2x-sinx Here's my book's explanation which I don't totally follow sin x cos^2x-sinx=sinx(cos^2x-1) =-sinx(1-cos^2x) =-sinx(sin^2x) (Where does sine come from and what happend to cosine?) =-sin^3x

math (repost)

Which of the following are inverse functions? 1. Arcsin x and sin x 2. cos^-1 x and cos x 3. csc x and sin x 4. e^x and ln x 5. x^2 and +/- sqrt x 6. x^3 and cubic root of x 7. cot x and tan x 8. sin x and cos x 9. log x/3 and 3^x I believe the answers are 2, 4, 6, and 9, but ...

Math (Trig)

sorry, another I can't figure out Show that (1-cot^2x)/(tan^2x-1)=cot^2x I started by factoring both as difference of squares. Would I be better served by writing in terms of sine and cosine? Such as: [1-(cos^2x/sin^2x)]/[(sin^2x/cos^2x)-1]=(cos^2x/sin^2x)

Trigonometry

For 0<x<pi/2, sin x and cos x are both less than 1 and greater than 0 (easy to see). We are also given that sin^2x+cos^2x=1. Use this to show that sin^7x+cos^7x<1 for 0<x<pi/2. Unsure on how to proceed?

Pages

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
  26. 26
  27. 27
  28. 28
  29. 29
  30. 30
  31. 31
  32. 32
  33. 33
  34. 34
  35. 35
  36. 36
  37. 37
  38. 38
  39. 39
  40. 40
  41. 41
  42. 42
  43. 43
  44. 44
  45. 45
  46. 46
  47. 47
  48. 48
  49. 49
  50. 50
  51. 51
  52. 52
  53. 53
  54. 54
  55. 55
  56. 56
  57. 57
  58. 58
  59. 59
  60. 60
  61. 61
  62. 62
  63. 63
  64. 64
  65. 65
  66. 66
  67. 67
  68. 68
  69. 69
  70. 70
  71. 71
  72. 72
  73. 73
  74. 74
  75. 75
  76. 76
  77. 77
  78. 78
  79. 79
  80. 80
  81. 81
  82. 82
  83. 83
  84. 84
  85. 85
  86. 86
  87. 87
  88. 88
  89. 89
  90. 90
  91. 91
  92. 92
  93. 93
  94. 94
  95. 95
  96. 96
  97. 97
  98. 98
  99. 99
  100. 100