Calc help - check rest of answers, please?

4. Find the tangent line approximation, L(x), of f(x)=x^2/3 at x = 8.
L(x) = 4/3x-20/3
L(x) = 2/3x+8
L(x) = 4(x-8)
L(x) = 1/3x + 4/3
*L(x) = 4/3x - 8/3

5. A balloon is rising at a constant speed of 5 ft/sec. A boy is cycling along a straight road at a constant speed of 15 ft/sec. When he passes under the balloon, it is 5 feet above him. Approximately how fast is the distance between the boy and the balloon increasing 3 seconds after he has passed underneath it?
12 ft/sec
16 ft/sec
20 ft/sec
*25 ft/sec
30 ft/sec

6. A factory is manufacturing a rectangular storage container with an open top. The volume of the container is 10 ft^3, and the length of the base is twice the width. The material for the base costs $10 per square foot, and the material for the sides costs $6 per square foot. Find the cheapest cost to make the container, given the conditions.

$27.85
$46.19
*$87.24
$147.85
$163.54


7. The edge of a cube was found to have a length of 50 cm with a possible error in measurement of 0.1 cm. Based on the measurement, you determine that the volume is 125,000 cm^3. Use tangent line approximation to estimate the percentage error in volume.

0.6%
0.9%
*1.2%
1.5%
1.8%

8. An inverted conical tank (with vertex down) is 14 feet across the top and 24 feet deep. If water is flowing in at a rate of 12 ft^3/min, find the rate of change of the depth of the water when the water is 10 feet deep.

0.007 ft/min
0.449 ft/min
0.018 ft/min
*0.051 ft/min
0.065 ft/min


9. For the function f(x)=Inx/x^2, find the approximate location of the critical point in the interval (0, 5).

(0.5, −2.773)
(1, 0)
(1.649, 0.184)
*(2, 0.173)
(0.778, −1.813)

  1. 0
asked by Samantha
  1. I did #4 and #5 for you in your previous post

    #6
    let the width of the base be x
    let the length of the base be 2x
    let the height be y
    given: Volume = 10
    2x^2y = 10
    y = 5/x^2
    which was the last choice.


    cost = 10(2x^2) + 6( 2 ends + front + back)
    = 20x^2 + 6(2xy + 2xy + 2xy)
    = 20x^2 + 36xy
    = 20x^2 + 36x(5/x^2) = 20x^2 + 180/x
    d(cost)/dx = 40x - 180/x^2
    = 0 for a min cost

    40x = 180/x^2
    x^3 = 180/40 = 9/2
    x = (9/2)^(1/3)
    subbing that into cost = ...
    I get $163.54

    posted by Reiny
  2. Thank you so much! I'm getting number 7 as .9%, correct?

    posted by Samantha
  3. Nevermind, I figured them out! :) Thank you!

    posted by Samantha

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    Suppose f(x) is differentiable at x=a. What does tangent line approximation, y=, mean? Select all that apply (A) Local linearization (B) y=f(x)-f(a)-f'(a)(x-a) (C) The best liner approximation of f(x) near a (D) After zooming y is
  2. Calculus

    Suppose f(x) is differentiable at x=a. What does tangent line approximation, y=, mean? Select all that apply (A) Local linearization (B) y=f(x)-f(a)-f'(a)(x-a) (C) The best liner approximation of f(x) near a (D) After zooming y is
  3. Calculus

    Suppose f(x) is differentiable at x=a. What does tangent line approximation, y=, mean? Select all that apply (A) Local linearization (B) y=f(x)-f(a)-f'(a)(x-a) (C) The best liner approximation of f(x) near a (D) After zooming y is
  4. Calculus

    Suppose f(x) is differentiable at x=a. What does tangent line approximation, y=, mean? Select all that apply (A) Local linearization (B) y=f(x)-f(a)-f'(a)(x-a) (C) The best liner approximation of f(x) near a (D) After zooming y is
  5. ap calculus ab

    for f(x)=lnx we know that f(e)=1. Use the tangent line at(e,1) to compute the tangent line approximation of f(3). what does the difference between the actual value and the tangent line approximation have to do with the concavity
  6. Calculus

    Use linear approximation, i.e. the tangent line, to approximate 8.4^(1/3) as follows: Let f(x)= x^(1/3) . The equation of the tangent line to f(x) at x=8 can be written in the form y=mx+c where m=1/12 and c=4/3: Using this, find
  7. Math

    Use linear approximation, i.e. the tangent line, to approximate 1.6^3 as follows: Let f(x) = x ^3. The equation of the tangent line to f(x) at x = 2 can be written as y=12x-16 Using this, we find our approximation for 1.6 ^3 is
  8. Calculus

    Use linear approximation, i.e. the tangent line, to approximate 8.4^(1/3) as follows: Let f(x)= x^(1/3) . The equation of the tangent line to f(x) at x=8 can be written in the form y=mx+c where m=1/12 and c=4/3: Using this, find
  9. Calculus

    (a) Find the tangent line approximation for sqrt(9+x) near x=0. (b)Find a formula for the error, E(x),in the tangent line approximation found in part (a). For part A, is the answer y=3. For part b, I don't understand , any help
  10. Calculus

    Use linear approximation, i.e. the tangent line, to approximate \sqrt[3] { 7.9 } as follows: The equation of the tangent line to f(x) at x = 8 can be written in the form y = Using this, we find our approximation for \sqrt[3] {7.9}
  11. math

    1-show that 1-x/2 is the tangent line approximation to 1/ sqrt of 1+x near x=0 2-what is the local linearization of e^x^2 near x=1 3-find the tnagent line approximation of 1/x near x=1

More Similar Questions