Geometry.
 👍 0
 👎 0
 👁 221

 👍 0
 👎 0
Respond to this Question
Similar Questions

Geometry
Let ABC be any triangle. Equilateral triangles BCX, ACY, and BAZ are constructed such that none of these triangles overlaps triangle ABC. a) Draw a triangle ABC and then sketch the remainder of the figure. It will help if

Geometry
in triaangle ABC, AB=20 cm, AC=15 cm the length of the altitude AN is 12 cm prove that ABC is a right triangle so far i got that angle ANC is 90 degrees by definition on altitude i got really confused after so can you show me how

math
Triangle ABC undergoes a series of transformations to result in triangle DEF. Is triangle DEF congruent to triangle ABC ? Is it Congruent or Not congruent? 1.)) Triangle ABC is translated 3 units up and 5 units right, and then

Math
∆ABC has the points A(1, 7), B(2, 2), and C(4, 2) as its vertices. The measure of the longest side of ∆ABC is units. ∆ABC is triangle. If ∆ABD is formed with the point D(1, 2) as its third vertex, then ∆ABD is triangle.

Geometry (check answer)
Prove that the triangles with the given vertices are congruent. A(3, 1), B(4, 5), C(2, 3) D(1, 3), E(5, 4), F(3, 2) a The triangle are congruent because triangle ABC can be mapped to triangle DEF by a rotation. (x,y)>(y,

MATHS
the base BC of a triangle ABC is divided at D so that BD=1/3 BC .prove that ar(triangle ABD)=1/2 ar (triangle ADC)

maths
Abc is a triangle where ad bisects angle a and d is the midpoint of bc prove that triangle is isosceles

HELP!!!!RIGHT NOW!!!!
Which set of side lengths shows similar triangles? (1 points) A) Triangle ABC : 40, 20, 50; Triangle XYZ: 10, 4, 8 B) Triangle ABC : 30, 20, 60; Triangle XYZ: 40, 60, 90 C) Triangle ABC : 110, 80, 60; Triangle XYZ: 6, 8, 5.5 D)

Math
Suppose line GH is congruent to line JK, line HE is congruent to line KL, and angle 1 is congruent to angle L. Can you prove that triangle GHI is congrunet to triangke JKL, abd if so, how? A. You can use SAS to prove the triangles

Math
Which set of side lengths shows similar triangles? Triangle ABC : 40, 20, 50; Triangle XYZ: 10, 12.5, 10 Triangle ABC : 30, 20, 30; Triangle XYZ: 40, 30, 20 Triangle ABC : 110, 80, 60; Triangle XYZ: 12, 16, 22 Triangle ABC : 32,

mathematics
Ten points are marked on one side of △ABC. Another side of △ABC has 11 marked points and the third side has 12 marked points. None of the points are a vertex of the triangle. If any three noncollinear points can be the

geometry
Isosceles $\triangle{ABC}$ has a right angle at $C$. Point $P$ is inside $\triangle{ABC}$, such that $PA=11$, $PB=7$, and $PC=6$. Legs $\overline{AC}$ and $\overline{BC}$ have length $s=\sqrt{a+b\sqrt{2}}$, where $a$ and $b$ are
You can view more similar questions or ask a new question.