Grade 12 Physics

Two hockey pucks of equal mass approach each other. puck 1 has an initial velocity of 20.0 m/s (S 45 E), and puck 2 has an initial velocity of 15 m/s (S 45 W). after the collision, the first puck is moving with a velocity of 10.0 (S 45 W). Determine the final velocity of the second puck and explain if the collision is elastic, perfectly inelastic or non-perfectly elastic.

  1. 👍 1
  2. 👎 1
  3. 👁 1,136
  1. 25

    1. 👍 0
    2. 👎 1
  2. For this question my answer keeps on coming to 25m/s but answer is 28.

    1. 👍 0
    2. 👎 1
  3. The answer is 21m/s on an angle of S 31 E. You need to remember that forces and velocities are vectors, and as such, must be added or subtracted if they act in opposite directions... Try the question again but remember that in the x direction, the pucks were initially travelling in opposite directions.

    1. 👍 1
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. College Physics

    A hockey puck B rests on frictionless, level ice and is struck by a second puck A, which was originally traveling at 40.0 m/s and which is deflected 30 degrees from its original direction. Puck B acquires a velocity at a -45

  2. Physics

    a hockey player accelerates a puck (m=.167 kg) from rest to a velocity of 50 m/s in 0.0121 sec. Determine the acceleration of the p7uck and the force applied by the hockey stick to the puck. Neglect resistance forces.

  3. physics

    a hockey puck is given the initial speed of 10 m/s. If the coefficient of kinetic friction between the ice and puck is 0.10, how far will the puck slide before stopping?

  4. physics

    A hockey puck struck by a hockey stick is given an initial speed v0 in the positive x-direction. The coefficient of kinetic friction between the ice and the puck is μk. (a) Obtain an expression for the acceleration of the puck.

  1. Physics

    Two hockey pucks of equal mass are involved in a perfectly elastic, glancing collision, as shown in the figure below. The orange puck is initially moving to the right at voi = 3.95 m/s, when it strikes the initially stationary

  2. physics

    An ice hockey puck slides along the ice at 12 m/s. A hockey stick delivers an impulse of 4.0 kg*m/s causing the puck to move off in the opposite direction with the same speed. What is the mass of the puck? I tried all sorts of

  3. Physics

    two identical pucks collide on an air hockey table. one puck was originally at rest. if the incoming puck has a speed of 6 m/s and scatters to an angle of 30 degree, what is the velocity (magnitude and direction) of the second

  4. Physics

    A hockey puck of mass 0.16 kg, sliding on a nearly frictionless surface of ice with a velocity of 2.0 m/s (E), strikes a second puck at rest with a mass of 0.17 kg. the first puck has a velocity of 1.5 (N 31 E) after the

  1. Physics

    a person pushes on a hockey puck with their stick at an angle so the vertical force is 22N down and the horizontal force is 45N forward. Assume the ice is frictionless. What is the actual force the hockey player transmits to the

  2. physics

    Five hockey pucks are sliding across frictionless ice. The drawing shows a top view of the pucks and the three forces that act on each one. The forces can have different magnitudes (F, 2F, or 3F), and can be applied at different

  3. Physics

    A hockey player hits a puck with his stick, giving the puck an initial speed of 5.0 m/s. If the puck slows uniformly and comes to rest in a distance of 20 m, what is the coefficient of kinetic friction between the ice and the

  4. physic

    A hockey player strikes a puck that is initially at rest. The force exerted by the stick on the puck is 950 N, and the stick is in contact with the puck for 4.4 ms (0.0044 s). (a) Find the impulse imparted by the stick to the

You can view more similar questions or ask a new question.